

VESÍCULAS EXTRACELULARES Y MICRO-ARN COMO BIOMARCADORES DE DAÑO, REPARACIÓN CEREBRAL Y RECUPERACIÓN EN EL INFARTO CEREBRAL AGUDO

Resumen de los principales resultados de la Tesis Doctoral Elisa Alonso López

I Sesión Científica de la Red RICORS, 19 de Abril de 2022

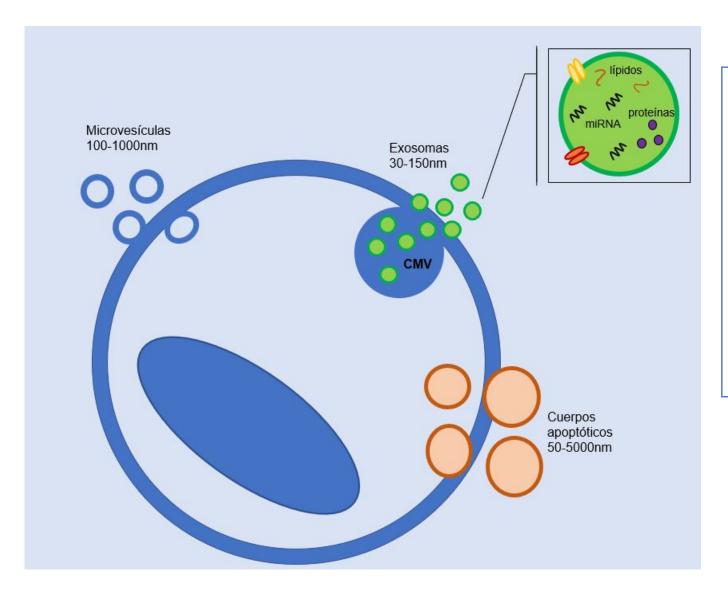
Factores tróficos

Vesículas Extracelulares

o a, b, J.M. Roda c, E. Díez-Tejedor a, d & E

Células mesenquimales

Jtero-Ortega et al. Stem Cell Research & Therapy (2015) 6:121 DOI 10.1186/s13287-015-0111-4


Open Access

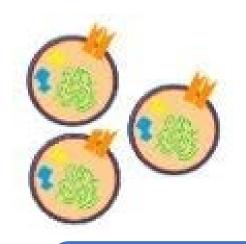
RESEARCH

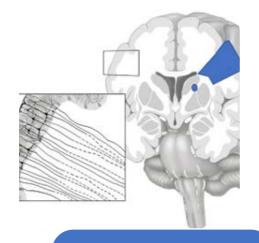
White matter injury restoration after stem cell administration in subcortical ischemic stroke


Laura Otero-Ortega^{1†}, María Gutiérrez-Fernández^{1*†}, Jaime Ramos-Cejudo^{1†}, Berta Rodríguez-Frutos¹, Blanca Fuentes¹, Tomás Sobrino², Teresa Navarro Hernanz³, Francisco Campos², Juan Antonio López⁴, Sebastián Cerdán³, Jesús Vázquez⁴ and Exuperio Díez-Tejedor^{1*}

Vesículas Extracelulares

- Secretadas por casi todos los tipos de células.
- Contienen: proteínas, lípidos, carbohidratos, ácidos nucleicos...
- Halladas en la mayoría de fluidos corporales.
- Son capaces de atravesar la barrera hematoencefálica.


Comunicación intercelular

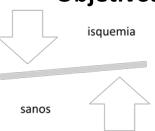

Adaptada de: Otero Ortega L, et al. Role of exosomes as treatment and potential biomarkers for stroke. Transl Stroke Res. 2019 Jun;10(3):241-249

Las VE que se liberan tras isquemia cerebral, atraviesan la BHE dando información de los mecanismos de daño y reparación cerebral tras el ictus.

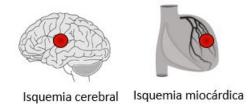
HIPÓTESIS

VE liberadas tras isquemia cerebral

- Identificación en suero
- Niveles y contenido

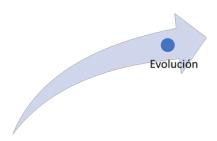

Diferencias según la topografía

- Córtico-subcortical
- Subcortical


Predicción Pronóstico

- Recuperación funcional
- Relación con mecanismos de daño y reparación

Objetivos:


1.1) Estudiar las VE en el proceso isquémico, evaluando si existen diferencias en sus niveles séricos o en su contenido en proteínas y miRNA entre pacientes con **isquemia** (cerebral o de miocardio) y **voluntarios sanos**.

1.2) Explorar si existen diferencias en los niveles séricos o en el contenido en proteínas y miRNA de las VE **dependiendo del órgano afectado** por isquemia.

1.3) Analizar las posibles diferencias en los niveles séricos de las VE o en su contenido en proteínas y miRNA en pacientes con infarto **córtico-subcortical** en comparación con el infarto cerebral de afectación **estrictamente subcortical**.

1.4) Evaluar la potencial utilidad de las VE como biomarcadores en la isquemia cerebral, analizando si existe correlación entre sus niveles séricos y el volumen del infarto cerebral o la recuperación neurológica, y si existe algún miRNA que permita predecir buena **evolución** de los pacientes con ictus isquémico agudo.

Diseño del Estudio: Estudio prospectivo y observacional caso-control.

Infarto agudo de miocardio (n=50)

Casos: Infarto cerebral agudo	Controles
-------------------------------	-----------

Infarto cerebral córtico-subcortical (n=50)

Infarto cerebral subcortical (n=50) Voluntarios sanos (n=50)

imarto cerebrar cortico subcorticar (ii se

Criterios de Inclusión

- Edad > 18 años
- Ingreso en Unidad de Ictus en < 24h
- Neuroimagen compatible con infarto agudo en territorio anterior
- ERm ≤ 1 previa al ictus
- Firma de Cl

- Edad > 18 años
- Firma de CI

Criterios de Exclusión

- Lesión cerebral previa en neuroimagen
- Consumo de drogas o alcohol
- Demencia
- Cualquier condición clínica que interfiera en el diagnóstico, tratamiento o seguimiento
- Participación en un ensayo clínico
- No firma de Cl

Variables de estudio y Cronograma:

Variables de estudio

Escalas clínicas

NIHSS

 $RR\ NIHSS = (1 - (NIHSS\ a\ los\ 3\ meses \div NIHSS\ inicial)) * 100$

ERm

Neuroimagen

- TC basal (escala de Fazekas, infartos silentes)
- RM cerebral (volumen de lesión)

Cuantificación de VE en suero

Composición de VE

- Proteínas
- miRNA

Escala de Fazekas

RR NIHSS >50%

RR NIHSS ≤50% evolución

RR NIHSS =100

recuperación t

medida

evolución

Esca

4. Parálisis facial

10. Disartria

11. Extinción

3. Campo visual

2. Mirada horizontal

1a. Nivel de conciencia

1b. Nivel de conciencia: mes y edad

1c. Nivel de conciencia: órdenes

0 Alerta. 1 Somnoliento 2 Obnubilación 3 Coma 0 Responde bien ambas 1 Responde una pregunta 2 No responde ninguna pregunta 0 Realiza ambas correctamente 1 Realiza una correctamente 2 No realiza ninguna orden 0 Normal 1 Parálisis parcial de la mirada 2 Parálisis total (desviación forzada) 0 Normal 1 Hemianopsia parcial 2 Hemianopsia completa 3 Hemianopsia bilateral 0 Normal, movimientos simétricos

i o bilateral de 10 segundos s de 5 segundos edad **MRIcron** 8. Sensibilidad 0 Normal

6

5

PV score (puntuación periventric profunda, del inglés Deep White

1 Déficit leve

2 Déficit total o bilateral 9. Lenguaje

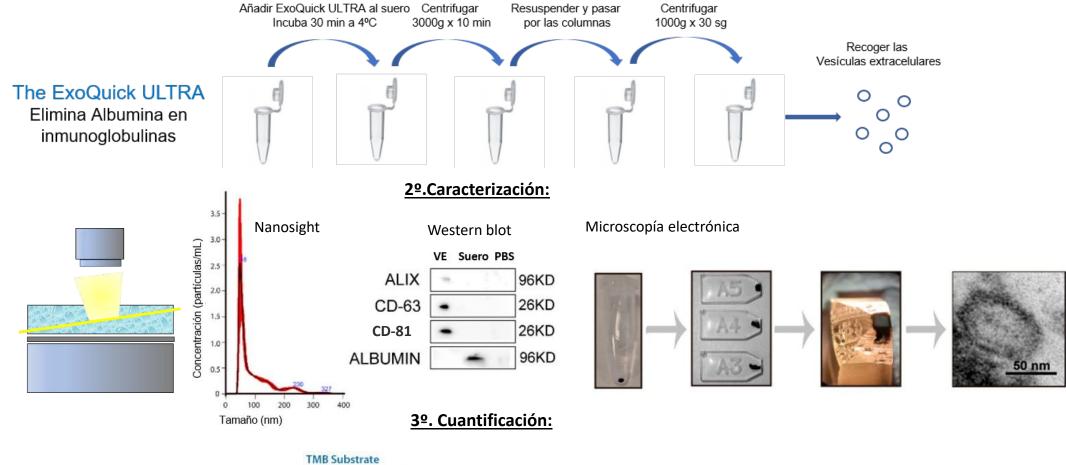
0 Normal

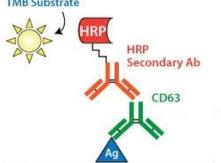
1 Afasia moderada (comunicación)

2 Afasia grave (no comunicación)

0 Normal

1 Leve o moderada (se comprende)

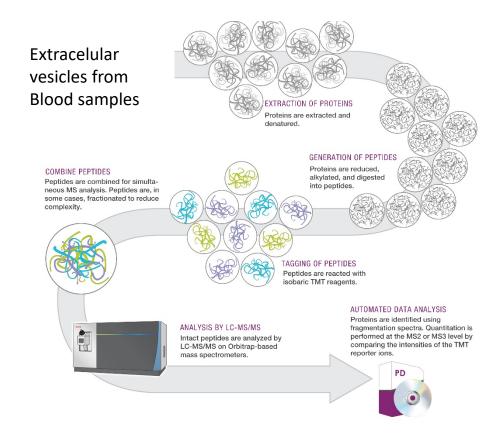

2 Grave (no se comprende), anartria, mudo


0 Normal

1 Extinción en una modalidad

2 Extinción en más de una modalidad o hemiinatención

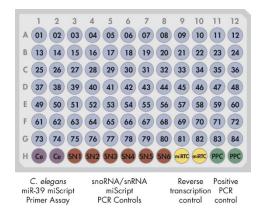
1º. Aislamiento:



Análisis del contenido en proteínas por espectrometría de masas. Orbitrap

 Análisis proteómico del contenido de las Vesículas Extracelulares en cuatro <u>pool de pacientes</u>: voluntarios sanos, infarto cerebral cortico-subcortical, infarto cerebral subcortical e infarto de miocardio.

Validación en pacientes por separado (10 pacientes por grupo)


En colaboración con Dra. Susana Bravo

Laboratorio de Proteómica

Análisis del contenido de microRNA de las vesículas extracelulares por Array y PCR

752 miRNAs estudiados mediante PCR array

En colaboración con Dra. Laura García Bermejo Biomarcadores y Dianas Terapéuticas

Validación por RT-qPCR en 20 pacientes por grupo

Programas informáticos y análisis de datos

1. Programa de procesamiento de imágenes Image J2

2. Programa informático MRIcron

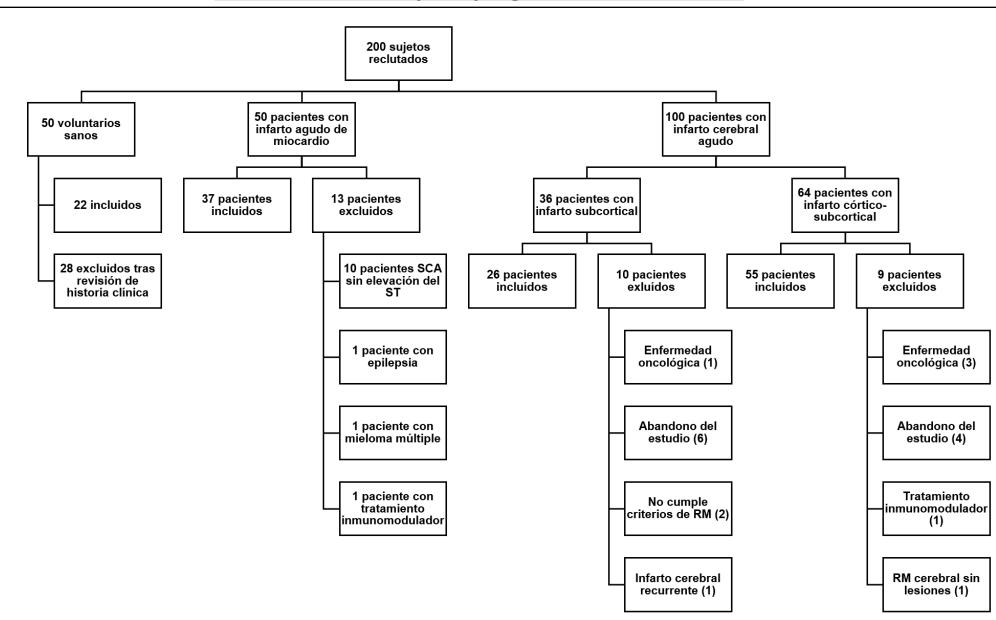
3. Programa informático Scaffold 4

4. Análisis de ontología genética, Software PANTHER

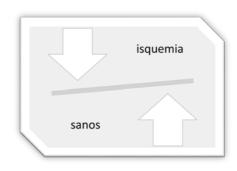
5. Interacciones entre las proteínas, Software STRING

6. Estudio de las proteínas diana de cada micro-ARN, MirTarget

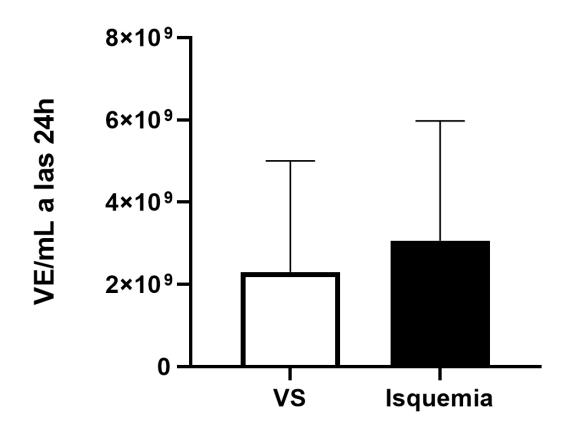
7. Representación de datos estadísticos, GraphPad Prism 8.0



8. Programa estadístico IBM-SPSS 23.0

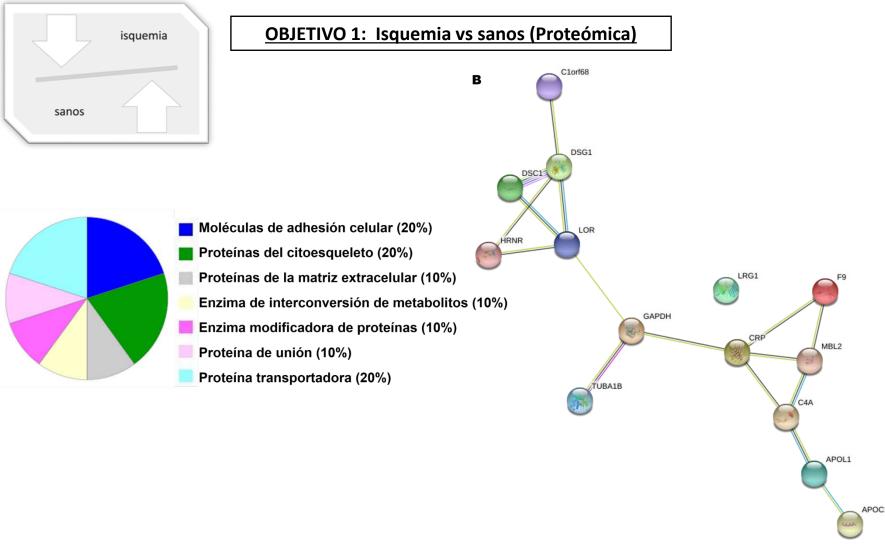

El análisis de datos se realizó bajo la supervisión y asesoramiento de la Unidad de Bioestadística del Hospital Universitario La Paz.

Reclutamiento de sujetos y seguimiento en el estudio

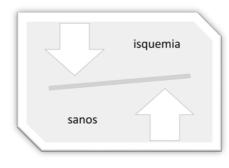


Características demográficas y basales

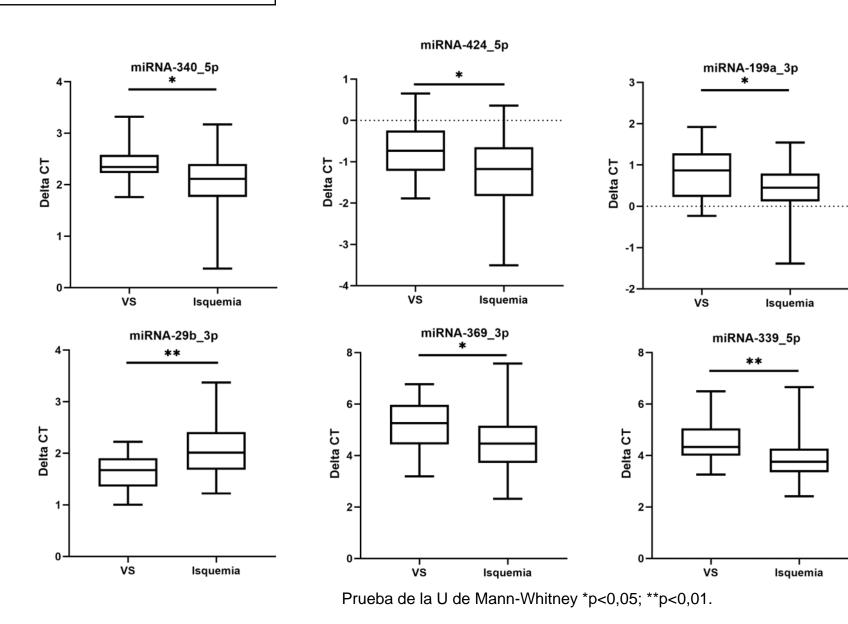
	IC-cs (n=55)	IC-s (n=26)	IAM (n=37)	VS (n=22)	р
Edad, media (DE)	70,65(15,39)	61,65 (11,83)	55,95 (13,95)	61(12,50)	0,0001
Sexo varón, N (%)	24 (43.6)	18 (69,2)	27 (73)	7 (30,4)	0,002
HTA, N (%)	35 (63,6)	19 (73,1)	17 (45,9)	3 (13)	0,0001
DM, N (%)	10 (18.2)	5 (19,2)	4 (10,8)	2 (8,7)	0,53
DL, N (%)	25 (45,5)	11 (42,3)	18 (48,6)	3 (13)	0,018
Fumador, N (%)	9 (16,4)	9 (34)	22 (59.5)	3 (13)	0,0001
Cardiopatía isquémica previa, N (%)	7 (12,7)	2 (7,69)	4 (10,8)	0 (0)	0,312
Índice de Charlson,	1 (2)	1 (2,25)	1(1)	0 (1)	0,004
Sólo fibrinolisis iv, N (%)	18 (32,7)	5 (19,2)	-	-	0,491
Sólo trombectomía, N (%)	3 (5,45)	0 (0)	-	-	0,564
Fibrinolisis iv + trombectomía, N (%)	13 (23,6)	0 (0)	-	-	0,008
Intervención coronaria percutánea, N (%)	-	-	37 (100)	-	-
Fazekas PV score, mediana (IQR)	1(2)	1(2)	-	-	0,8
Fazekas DWM score, mediana (IQR)	1(2)	1(2)	-	-	0,759
Infartos silentes, N (%)	4 (7,27)	9 (34,6)	-	-	0,002

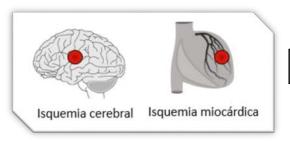


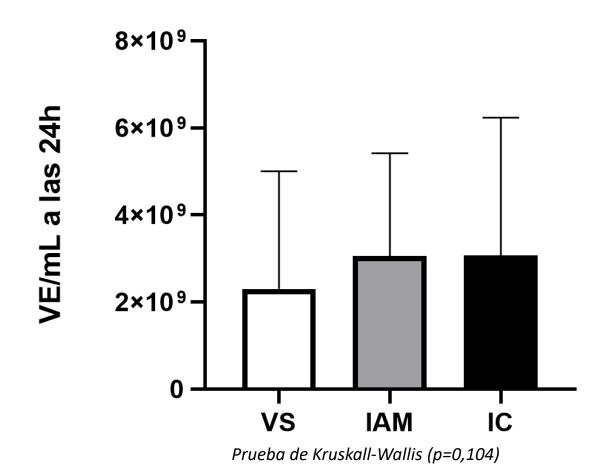
OBJETIVO 1: Isquemia vs sanos (Niveles VE)


Se observaron niveles más altos de VE en isquemia que en sanos, pero estas diferencias no fueron estadísticamente significativas.

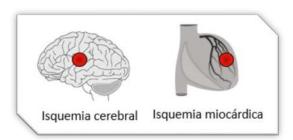
Prueba de U de Mann-Whitney (p=0,051)

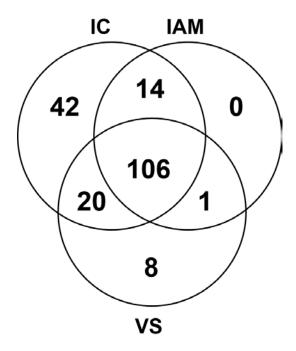

Se identificaron 14 proteínas comunes del proceso isquémico, la mayoría mostró interacciones entre sí.


Apolipoproteína L1	APOL1			
Apolipoproteína C1	APOC1			
Proteína C Reactiva	PCR			
Gliceraldehído-3-fosfato deshidrogenasa	GAPDH			
Proteína C4a del complemento	C4a			
Lectina de unión a manosa	MBL2			
Loricrina	LOR			
Cadena alfa 1b de tubulina	TUBA1B			
Cadena alfa 1b de tubulina Desmogleína	TUBA1B DSG1			
Desmogleína	DSG1			
Desmogleína Desmocolina	DSG1 DSC1			
Desmogleína Desmocolina Proteína 32 piel-específica	DSG1 DSC1 XP32/c1orf68			

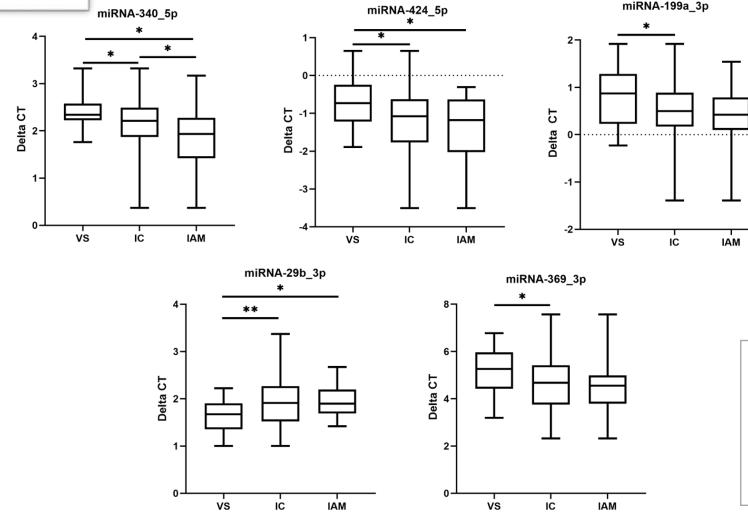

OBJETIVO 1: Isquemia vs sanos (miRNA)

Se identificaron 6 miRNA con diferente expresión en isquemia vs voluntarios sanos.

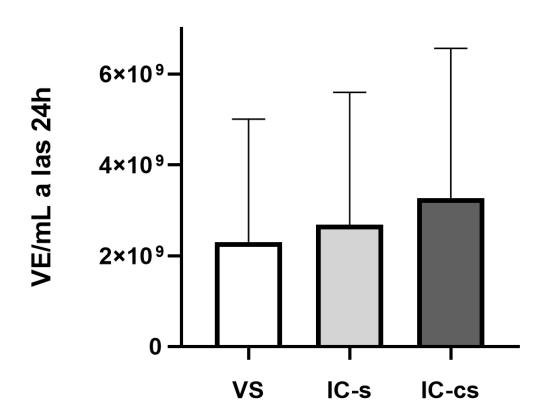



OBJETIVO 2: Infarto miocardio vs Infarto cerebral (Niveles de VE)

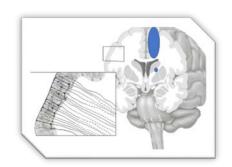
No hubo diferencias estadísticamente significativas entre niveles de VE de pacientes con infarto cerebral e infarto de miocardio.

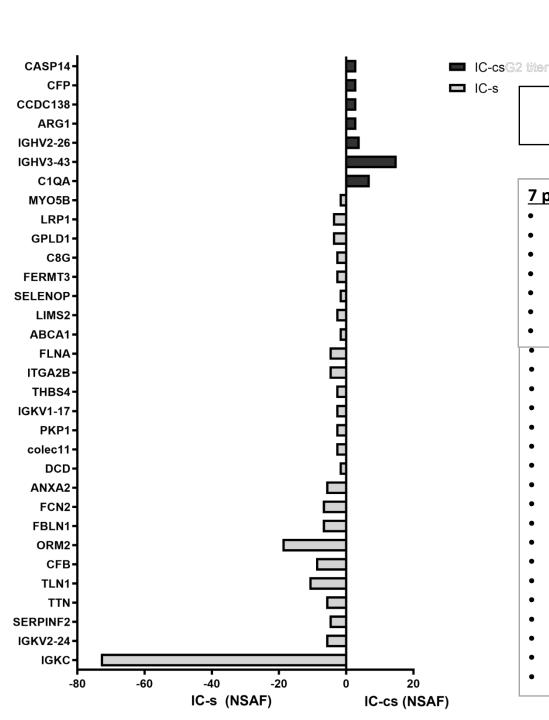

OBJETIVO 2: Infarto miocardio vs Infarto cerebral (Proteómica)

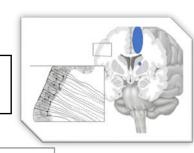
OBJETIVO 2: Infarto miocardio vs Infarto cerebral (miRNA)


miRNA-199a_3p

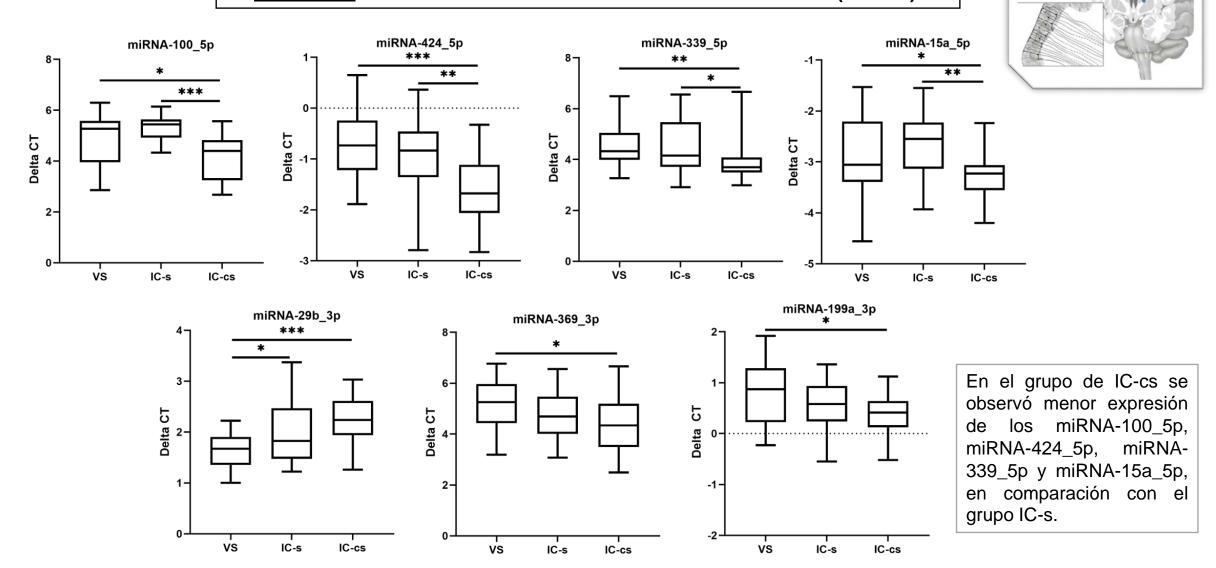
Prueba de la U de Mann-Whitney *p<0,05; **p<0,01.

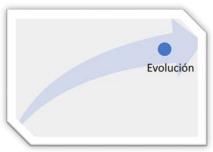

miRNA-340 niveles de Los fueron IAM e menores en infarto cerebral que en sanos siendo superior la expresión en infarto cerebral en comparación a IAM.


OBJETIVO 3: infarto cerebral córtico-subcortical vs subcortical (Niveles VE)

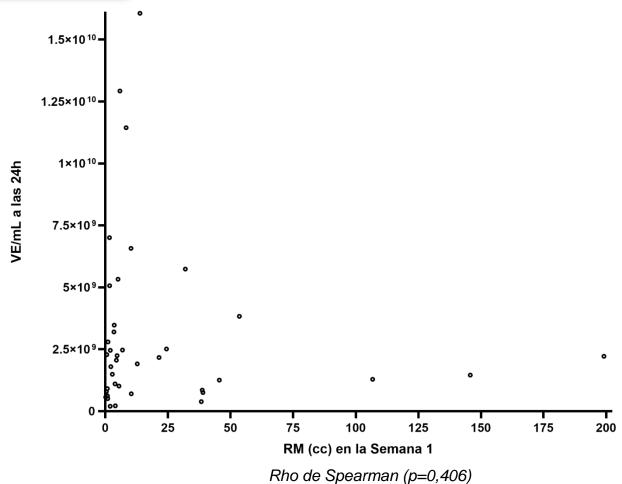

Prueba de Kruskal-Wallis (p=0,119).

No hubo diferencias estadísticamente significativas entre niveles de VE de pacientes con infarto cerebral subcortical y pacientes con infarto cerebral córtico-subcortical.

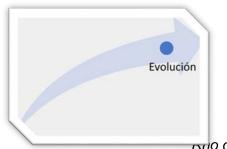

OBJETIVO 3: infarto cerebral córtico-subcortical vs subcortical (proteómica)


7 proteínas en IC-cs:

- subunidad A del subcomponente C1q del complemento (C1QA)
- región variable de la cadena pesada de inmunoglobulina 3-43 (IGHV3-43)
- región variable de la cadena pesada de inmunoglobulina 2-26 (IGHV2-26)
- arginasa-1 (ARG1)
- proteína 138 que contiene el dominio en espiral (CCDC138)
- properdina (CFP)
- caspasa-14 (CASP14)
- TIDUIINA-1 (FBLN1)
- ficolina-2 (FCN2)
- anexina A2 (ANXA2)
- dermicidina (DCD)
- colectina 11 (colec11)
- placofilina-1 (PKP1)
- región variable de cadena ligera kappa de inmunoglobulina 1-17(IGKV1-17)
- trombospondina-4 (THBS4)
- integrina alfa-IIb (ITGA2B)
- filamina-A (FLNA)
- proteína transportadora de casete unida a ATP A1 (ABCA1)
- proteína 2 con dominio LIM similar al antígeno de senescencia (LIMS2)
- selenoproteína P (SELENOP)
- homólogo de la familia de fermitina 3 (FERMT3)
- subunidad gamma del factor 8 del complemento (C8G)
- fosfolipasa D específica de fosfatidilinositol-glicano (GPLD1)
- proteína 1 relacionada con el receptor de lipoproteínas de baja densidad (LRP1)
- miosina Vb (MYO5b)

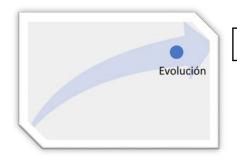

OBJETIVO 3: infarto cerebral córtico-subcortical vs subcortical (miRNA)

Prueba de la U de Mann-Whitney *p<0,05; **p<0,01; ***p<0,001.

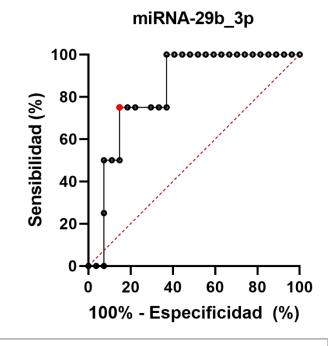

OBJETIVO 4: VE y miRNA como biomarcadores.

RM (<7 días)

IC-cs (n=23) IC-s (n=16)


No hubo relación entre los niveles de VE y el tamaño de lesión.

OBJETIVO 4: VE y miRNA como biomarcadores.


Prueba de la U de Mannrano de Spearman (p=0,1) Rho de Spearman (p=0,168) Whitney (p=0,061) 2×10¹⁰ 1×10¹⁰-2×10¹⁰-VE/mL a las 24-72h **VE/mL** a las 24-72h VE/mL a las 24-72h 8×109-1.5×10¹⁰ 1.5×10¹⁰-6×109-1×10¹⁰ 1×10¹⁰· 4×109-5×109 5×109 2×109-50 100 ERm 3 meses RR NIHSS (%)

- No hubo correlación entre los niveles de VE y la recuperación funcional medida con la reducción relativa de NIHSS (RRNIHSS) (p=0,1).
- Se observó que los niveles VE fueron más bajos en el grupo de pacientes que presentaron recuperación completa (RR NIHSS=100), aunque las diferencias no fueron estadísticamente significativas (p=0,061).
- No hubo correlación entre la evolución medida por la ERm y los niveles de VE en las primeras 24-72h (*p*=0,168).

OBJETIVO 4: VE y miRNA como biomarcadores.

	miRNA-100_5p						
	¹⁰⁰ 7		0000	00 00	0000	000	
(%)	80-	••••		نو	e e e e e e e e e e e e e e e e e e e	,	
idad	60-		,	and the second			
Sensibilidad (%)	40-		, e e e e e e e e e e e e e e e e e e e				
Ser	20-	منتمني أ					
	0 +	1	<u> </u>	1		\neg	
	0	20	40	60	80	100	
	1	00% - I	Espe	cificio	dad (%)	

miRNA	15a- 5p	376a- 3p	424- 5p	339- 5p	29b- 3p	369- 3p	340- 5p	199a- 3p	100- 5p	1537
U de Mann- Whitney	29	53	46	43	18	46	32	44,5	19	50
р	0,15	0,98	0,67	0,55	0,03	0,67	0,21	0,59	0,04	0,84

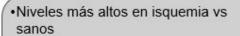
De los diez miRNA estudiados, hubo dos (miRNA 100-5p y miRNA 29b-3p) que se asociaron a buena evolución (RR NIHSS>50%)

- Los niveles de miRNA-100_5p por debajo de un punto de corte de 5.47 Delta CT predicen buena recuperación (RR NIHSS >50%) a los tres meses (AUC= 0,824, sensibilidad 75%, especificidad 81,5%, p=0,039).
- Los niveles de miRNA-29b_3p por debajo de un punto de corte de 2,52 Delta CT predicen buena recuperación (RR NIHSS >50%) a los tres meses (AUC 0,833, sensibilidad 75%, especificidad 85,2%, p=0,034).

- Niveles más altos en isquemia vs sanos
- •14 proteínas en isquemia no presentes en sanos.
- 6 miRNA con expresión diferente en isquemia vs sanos.

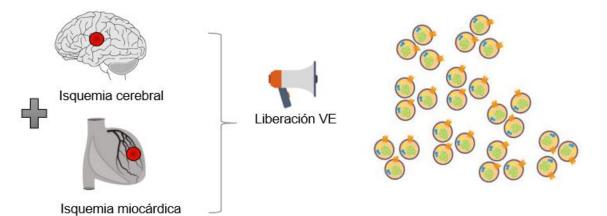
VE en el proceso isquémico

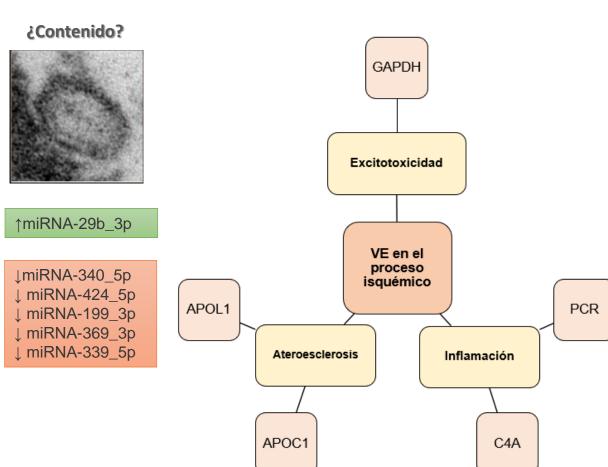
- •No existen diferencias en los niveles de VE entre IAM e Infarto cerebral.
- •42 proteínas en infarto cerebral no presentes en
- miRNA-340_5p se encuentra sobreexpresado en el infarto cerebral vs IAM.


VE dependiendo del órgano afectado

VE según la topografía de la lesión cerebral

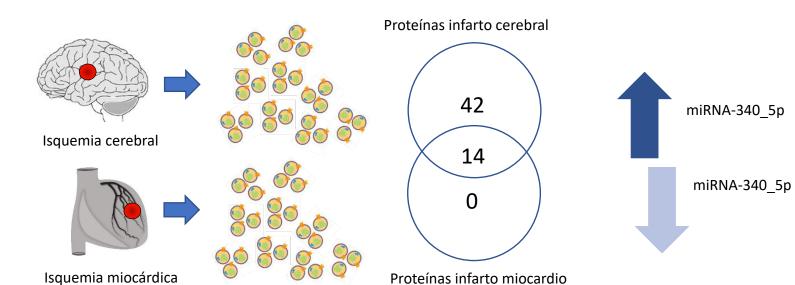
VE y miRNA. Recuperación neurológica


- •No existen diferencias en los niveles de VE entre IC-cs e IC-s.
- •7 proteínas halladas sólo en IC-s; 25 proteínas halladas sólo en IC-s.
- •infraexpresión de miRNA-15a_5p, miRNA-424_5p, miRNA-100_5p y miRNA-339_5p en el grupo de IC-cs

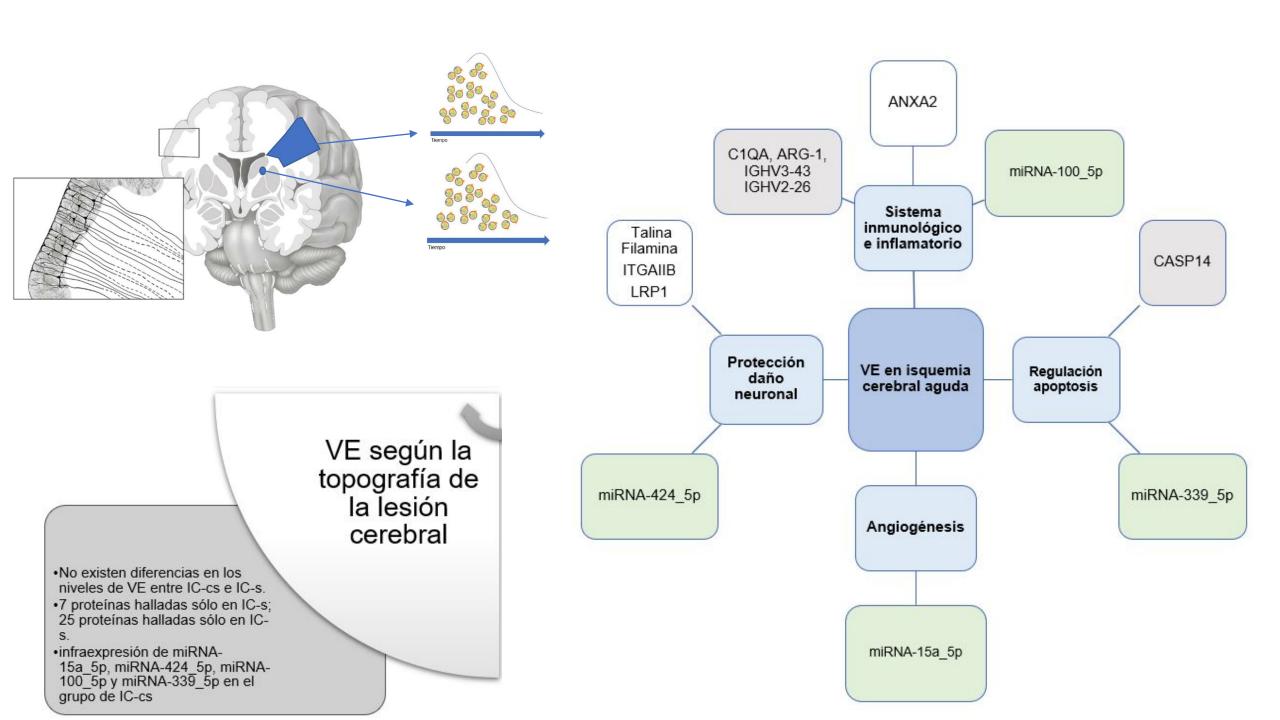

 Niveles de VE no se correlacionan con volumen de lesión ni con recuperación neurológica.
 Expresión de miRNA-100_5p por debajo de 5,47 Delta CT y de miRNA-29b_3p por debajo de corte de 2,52 Delta CT, se asociaron a buena recuperación neurológica.

- 14 proteínas en isquemia no presentes en sanos.
- 6 miRNA con expresión diferente en isquemia vs sanos.

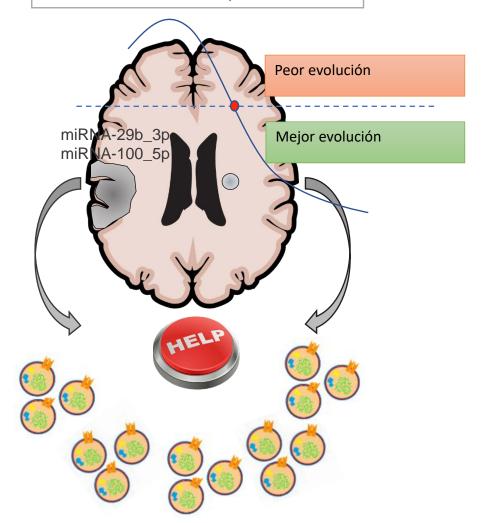
VE en el proceso isquémico

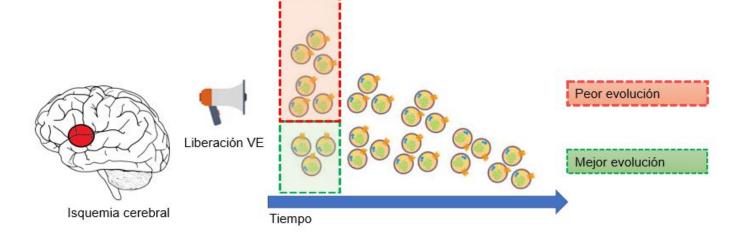

•No existen diferencias en los niveles de VE entre IAM e Infarto cerebral.

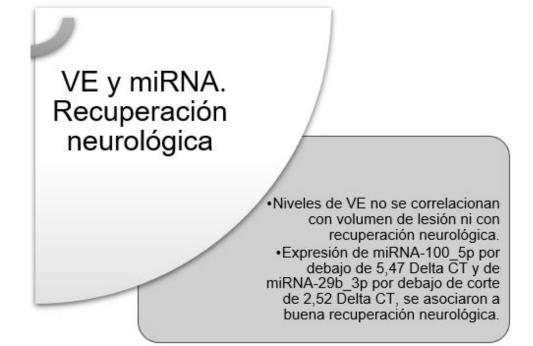
•42 proteínas en infarto cerebral no presentes en IAM.


•miRNA-340_5p se encuentra sobreexpresado en el infarto cerebral vs IAM.

VE dependiendo del órgano


afectado




Daño por isquemia/reperfusión

Volumen de lesión por RM

Artículos publicados:

Article

Similarities and Differences in Extracellular Vesicle Profiles between Ischaemic Stroke and Myocardial Infarction

Laura Otero-Ortega ^{1,†}, Elisa Alonso-López ^{1,†}, María Pérez-Mato ^{1,†}, Fernando Laso-García ^{1,†}, Mari Carmen Gómez-de Frutos ¹, Luke Diekhorst ¹, María Laura García-Bermejo ², Elisa Conde-Moreno ², Blanca Fuentes ¹, María Alonso de Leciñana ¹, Eduardo Armada ³, Lorena Buiza-Palomino ⁴, Exuperio Díez-Tejedor ^{1,‡} and María Gutiérrez-Fernández ^{1,*,‡}

Article

Circulating Extracellular Vesicle Proteins and MicroRNA Profiles in Subcortical and Cortical-Subcortical Ischaemic Stroke

Laura Otero-Ortega ^{1,†}, Elisa Alonso-López ^{1,†}, María Pérez-Mato ^{1,†}, Fernando Laso-García ¹, Mari Carmen Gómez-de Frutos ¹, Luke Diekhorst ¹, María Laura García-Bermejo ², Elisa Conde-Moreno ², Blanca Fuentes ¹, María Alonso de Leciñana ¹, Susana B. Bravo ³, Exuperio Díez-Tejedor ^{1,‡} and María Gutiérrez-Fernández ^{1,*,‡}

Grupo de investigación de Neurología y enfermedades Cerebrovasculares

Instituto de Investigación IdiPAZ

Laboratorio de Ciencias Neurológicas y Cerebrovascular

M Gutiérrez (Biol D, PhD)

M Pérez

L Otero (BioID,PhD)

MC Gómez (Biol D)

F Laso (Biol D)

L Piniella

R Gallego (Biol D)

J Pozo (Biol D)

I García (MD)

Unidad de Ictus

B Fuentes MD, PhD

R Rigual MD

G Ruiz

MD, PhD

E de Celis MD

M Alonso de Leciñana

MD, PhD

Neurosonología,

Innovación y Digitalización

J Rodríguez

MD, PhD

D López Master Ing. Biomed

E Alonso MD, PhD

P Franco Jefa enferería

S Calcedo Enfermera

MD

A Fernández R Frutos MD

Neurorradiología

P Navia MD, PhD

B Marín MD

A. Álvarez MD

Neurocirugía

A Gomez de la Riva MD

B Hernandez MD

Rehabilitación

S Moraleda MD. PhD

D. Hernández MD, PhD

Prof. Exuperio Díez Tejedor (MD, PhD) **Director**

Laboratorio de imagen

(BioID, PhD) (BioI D, PhD)

S Cerdán (Jefe, PhD)

P López (BBCH,PhD)

T Navarro (Técnico)