

ENDOVASCULAR TREATMENT IN ACUTE LARGE VESSEL OCCLUSION DUE TO INTRACRANIAL ATHEROSCLEROSIS

Elena López-Cancio, María Castañón-Apilanez, Herbert Tejada-Meza, Mar Castellanos, Enrique Palacio, Yolanda Bravo, Patricia de la Riva, Juan Timiraos, Iria Beltrán, Emilio Rodríguez, Cristina Pérez, Mari M Freijo, Juan M García, Joaquín Sánchez, Juan F Arenillas

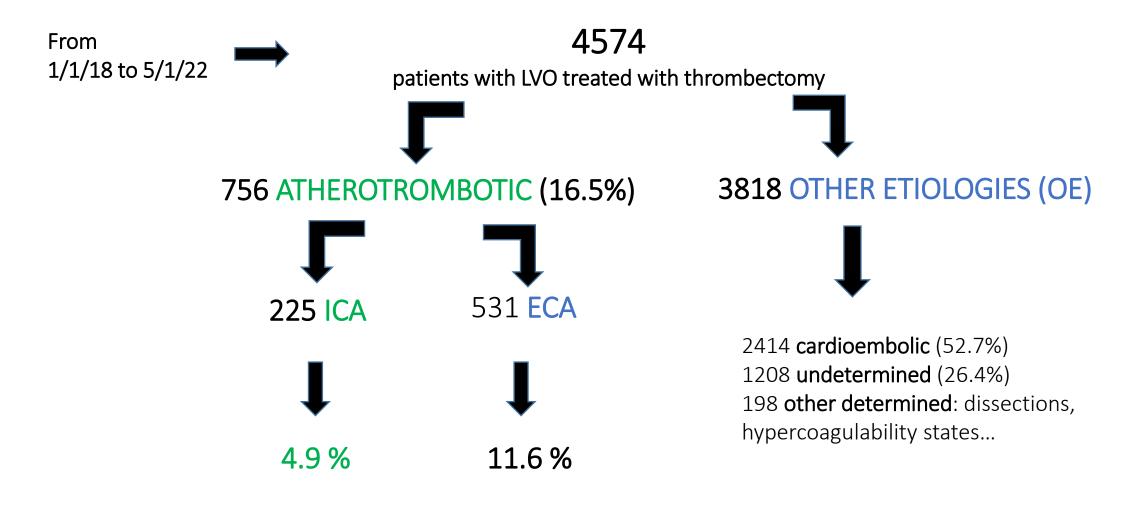
NORDICTUS network

INTRODUCTION

- Acute large vessel intracranial occlusions (LVO) may be due to underlying intracranial atherosclerosis (ICAS) and may be treated with acute endovascular procedures (stent retrievers, aspiration)
- Patients with ICAS-related acute LVO may suffer from early reocclusions during thrombectomy and often require rescue therapy with angioplasty, stenting and/or infusion of glycoprotein IIb/IIIa inhibitors (i.e tirofiban) to achieve successful recanalization.
- However, as stated in recent ESO Guideline on ICAS management, there is a lack of evidence on the use of those procedures in the acute phase of stroke.

OBJECTIVES

- To evaluate the percentage of **patients with LVO due to intracranial atherosclerosis** (ICA) among all acute thrombectomies in our setting (NORDICTUS registry)
- To evaluate the **clinical**, **procedural**, **and prognostic variables** in those patients, compared to other etiologies.


METHODS

- Prospective registry of patients treated with endovascular therapy in the acute phase in NORDICTUS registry (Spain), from 1/1/18 to 5/1/22.
- NORDICTUS network: 13 tertiary centers, 11 million reference population
- Baseline, procedural, and prognostic variables were compared between the following etiological groups:
 - ICA: intracranial atherosclerosis
 - ECA: extracranial atherosclerosis
 - OE: other etiologies

RESULTS: POPULATION INCLUDED

RESULTS: BASELINE VARIABLES IN DIFFERENT ETIOLOGIC GROUPS

	ICA (n= 225)	ECA (n=531)	OE (n=3818)
Age, years	70.3±11	70.4±11	74.3±12.5
Gender, men (%)	67.7	72.3	47.2
HT (%)	70	63	64
DM (%)	29	24	20
Coronary Disease	12	14	14
Smoking (active)%	32	36	20
Alcohol>40g/day (%)	15	15	6
Total Cholesterol	163±46	158±39	156±44
LDL, mg/dl	97±36	93±34	91±40
HDL, mg/dl	43±12	42±13	45±15
Glucose, mg/dl	136±55	125±42	124±42
Tryglicerids, mg/dl	125±93	118±54	101±45

RESULTS: BASELINE VARIABLES IN DIFFERENT ETIOLOGIC GROUPS

	ICA (n= 225)	ECA (n=531)	OE (n=3818)
Baseline NIHSS, median	14[8-19]	15[9-19]	16[10-20]
Main intracranial occlusion (%)			
- TICA	19	16	13
- MCA-M1	39	54	53
- MCA-M2	14	17	23
- Basilar	19	3	6
Posterior circulation (%)	26	5	9
ASPECTS socore	9[8-10]	9[7-10]	9[8-10]
Hyperdense vessel sign	38	60	53

RESULTS: PROCEDURAL VARIABLES IN DIFFERENT ETIOLOGIC GROUPS

PROCEDURAL VARIABLES	ICA (n= 225)	ECA (n=531)	OE (n=3818)
Number of passes	2[1-3]	1[1-2]	1[1-2]
Final TICI 2b-3 (%)	83	89	90
Acute stent-intracranial (%)*	18	0.6	0.7
Acute stent-extracranial (%)	6	51	2
Time of procedure, minutes	50[30-95]	54[34-80]	35[20-60]
General Anesthesia (%)	66	47	41
Prior IV rTPA (%)	21	29	26

*Intracranial stenting was not associated with symptomatic intracranial hemorrhage or mortality

RESULTS: PROGNOSTIC VARIABLES IN DIFFERENT ETIOLOGIC GROUPS

	ICA (n= 225)	ECA (n=531)	OE (n=3818)
SICH (%)	5.6	7.4	5.8
Intrahospital mortality(%)	15.6	12.5	11.2
Good functional outcome 3m (%)*	39.8	48.7	46.5
Mortality 3m (%)**	25	16.4	21

*ICAS was an independent predictor of functional outcome at 3m (mRS 0-2 or stability if baseline mRS>2) in logistic regression analysisis adjusted by age, gender, DM, HT, baseline NIHSS, anterior/posterior circulation, prior tPA use and final TICI: OR 0.58 [0.40-0.85], p 0.015

**ICAS was not an independent predictor of mortality at 3m in logistic regression analysis adjusted by age, gender, DM, HT, NIHSS, anterior/posterior circulation, prior tPA use, final TICI

CONCLUSIONS

- In almost **5%** of patients treated with acute thrombectomy in NORDICTUS registry, LVO occlusion was due to ICA.
- Acute intracranial stenting was used in 18% of ICA patients and not associated with ICH or prognosis
- ICAS was associated with a greater complexity of the endovascular procedure (more passes, longer procedural time, lower complete recanalization rates) and worse functional outcome at three months
- Clinical trials evaluating acute endovascular procedures (new devices, intraarterial drugs) in ICA-LVO occlusions are needed

THANKS