

Novel targets and treatments for brain hemorrhage

Ass. Prof. Marietta Zille, PhD

University of Vienna, Department of Pharmaceutical Sciences, Division Pharmacology and Toxicology

Barcelona, October 8, 2024

Therapeutic targets and approaches in ICH

The hematoma as a therapeutic target in ICH

- Retinoid X receptor agonist Bexarotene alters microglia/macrophage phenotype, enhances phagocytosis, speeds hematoma clearance
- Intranasal delivery of IL-4 facilitates microglia- and macrophage-mediated hematoma resolution
- Block 'don't-eat-me' signals expressed on erythrocytes that normally suppress phagocytosis (e.g., using a CD47 antibody)

Hemolysis products mediate secondary injury in ICH

Chen-Roetling and Regan, 2006; Robinson et al., 2009; Wang et al., 2006, Zille et al., 2017

How does lysed blood induce cell death after ICH?

Regulated cell death mechanisms

orrhagic Stroke					
	vehicle				
y	100µM hemin				
Subcategory	Cell Death Inhibitor	Target	Conc.		
	3-Methyladenine	Phosphoinositide 3-kinase (PI3K), autophagosome formation	100-1500µM		
Macroautophagy	Bafilomycin A1	Endosomal acidification	0.0005-0.1µM		
	Chloroquine diphosphate salt	Lysosomal function	0.1-50µM		
	Rapamycin	Mechanistic target of rapamycin (mTOR), autophagy inducer	0.1-5µM		
Mitophagy	Mitochondrial division inhibitor 1	GTPase activity in dynamin-related protein Drp-1, abnormal mitophagy	0.1 - 100µM		
	z-VAD-fmk	Caspases	0.1-100µM		
	Cycloheximide	Protein synthesis	0.1-100µM		
ndent apoptosis	Cyclosporine A	Cyclophilin D (mitoch. permeability transition pore)	0.1-10µM		
	SB203580	p38 mitogen-activated protein (MAP) kinase (p38)	1-30µM		
	SP600125	c-JUN N-terminal kinase (JNK)	0.01-5µM		
	Cycloheximide	Protein synthesis	0.1-100µM		
	Actinomycin D	mRNA synthesis	0.001 - 1µM		
Ferroptosis	Ferrostatin-1	Canonical ferroptosis inhibitor, reactive lipid species (RLS)	0.01-1µM		
	Deferoxamine	Iron, hypoxia-inducible factor (HIF) prolyl hydroxylase domain- containing (PHD) inhibition	0.1-100µM		
	N-Acetylcysteine	Reactive oxygen species (ROS), RLS	100-2000µM		
	Trolox, vitamin E analog	RLS	0.1-100µM		
	U0126	Mitogen-activated protein kinase kinase 1/2 (MEK 1/2)	1-20µM		
Parthanatos	PARP inhibitor III	Poly(ADP-ribose) polymerase 1 and 2 (PARP1 and 2)	0.1-50µM		
r ai thanatos	Olaparib (AZD-2281, trade name Lynparza)	PARP1 and 2	1-20µM		
Necroptosis	Necrostatin-1	Receptor-interacting protein kinase 1 (RIP1)	10-250µM		
	orrhagic Stroke y Subcategory Macroautophagy Mitophagy endent apoptosis Ferroptosis Parthanatos Necroptosis	orrhagic StrokevehicleJolµM heminSubcategoryCell Death InhibitorBafilomycin A1Chloroquine diphosphate saltRapamycinMitophagyMitochondrial division inhibitor 1MitophagyZ-VAD-fmkSB203580SP600125SP600125SP600125FerroptosisCycloheximide Ferrostatin-1ParthanatosPARP inhibitor III Olaparib (AZD-2281, rade name Lynparza)NecroptosisNecrostatin-1	whicle y vehicle Subcategory Cell Death Inhibitor Target Macroautophagy 3-Methyladenine Phosphoinositide 3-kinase (PI3K), autophagosome formation Macroautophagy Bafilomycin A1 Endosomal acidification Chloroquine diphosphate salt Lysosomal function Mitophagy Mitochondrial division inhibitor 1 GTPase activity in dynamin-related protein Drp-1, abnormal mitophagy Mitophagy Z-VAD-fmk Caspases Cycloheximide Protein synthesis Cycloheximide Protein synthesis Cyclosporine A Cyclophilin D (mitoch. permeability transition pore) SB203580 p38 mitogen-activated protein (MAP) kinase (p38) SP600125 c-JUN N-terminal kinase (JNK) Ferroptosis Cycloheximide Protein synthesis Ferrostatin-1 Canonical ferroptosis inhibitor, reactive lipid species (RLS) Iron, hypoxia-inducible factor (HIF) prolyl hydroxylase domain- containing (PHD) inhibition N-Acetylcysteine RLS Trolox, vitamin E RLS Trolox, vitamin E RLS Tolox, vitamin E		

Zille et al., Stroke, 2017

Tang et al., Cell Res, 2019

The mechanisms underlying neuronal cell death in hemorrhagic and ischemic stroke are different

Model of Hemorrhagic Stroke					%Viability
Hemin Toxicity vehicle 100µM hemin		vehicle			100.00
		100µM hemin			50.14 ± 11.89
Cell Death Mechanism	Subcategory	Cell Death Inhibitor	Target	Conc.	%Viability
		3-Methyladenine	Phosphoinositide 3-kinase (PI3K), autophagosome formation	100-1500µM	46.62 ± 11.89 (500µM)
	Macroautophagy	Bafilomycin A1	Endosomal acidification	0.0005-0.1µM	57.42 ± 16.15 (10nM)
Autophagy	macroautophagy	Chloroquine diphosphate salt	Lysosomal function	0.1-50µM	62.87 ± 9.06 (5µM)
		Rapamycin	Mechanistic target of rapamycin (mTOR), autophagy inducer	0.1-5µM	44.34 ± 10.71 (1µM)
	Mitophagy	Mitochondrial division	GTPase activity in dynamin-related	0.1 -1 00µM	53.32 ± 5.59
I		z-VAD-fmk	Caspases	0.1-100µM	45.38 ± 9.87 (100µM)
		Cycloheximide	Protein synthesis	0.1-100µM	47.37 ± 2.78 (100µM)
Caspase-dependent apoptosis		Cyclosporine A	Cyclophilin D (mitoch. permeability transition pore)	0.1-10µM	44.2 ± 10.25 (500nM)
	SB203580	p38 mitogen-activated protein (MAP) kinase (p38)	1-30µM	52.61 ± 7.15 (5µM)	
		SP600125	c-JUN N-terminal kinase (JNK)	0.01-5µM	65.21 ± 5.78 (30μM)
		Cycloheximide	Protein synthesis	0.1-100µM	47.37 ± 3.79 (0.1µM)
Ferroptosis Regulated Necrosis		Actinomycin D	mRNA synthesis	0.001-1µM	53.44 ± 10.79 (1µM)
		Ferrostatin-1	Canonical ferroptosis inhibitor, reactive lipid species (RLS)	0.01-1µM	82.68 ± 11.66 * (1µM)
	Ferroptosis	Deferoxamine	Iron, hypoxia-inducible factor (HIF) prolyl hydroxylase domain- containing (PHD) inhibition	0.1-100µM	87.14 ± 8.53 * (100µM)
		N-Acetylcysteine	Reactive oxygen species (ROS), RLS	100-2000µM	95.37 ± 7.08 * (1mM)
		Trolox, vitamin E analog	RLS	0.1-100µM	88.3 ± 16.01 * (100µM)
		U0126	Mitogen-activated protein kinase kinase 1/2 (MEK 1/2)	1-20µM	82.45 ± 13.45 * # (10µM)
	Deuthemates	PARP inhibitor III	Poly(ADP-ribose) polymerase 1 and 2 (PARP1 and 2)	0.1-50µM	55.80 ± 12.93 (50μM)
Parthanato	Parthanatos	Olaparib (AZD-2281, trade name Lynparza)	PARP1 and 2	1-20µM	44.64 ± 12.33 (20µM)
Necroptosis	Necrostatin-1	Receptor-interacting protein kinase	10-250µM	77.4 ± 11.88 *	

Bahmani, Zille et al., JCBFM, 2011 Riegelsberger, Zille et al., Exp Neurology, 2011; Zille et al., JCBFM, 2012; Zille et al., Plos One, 2014

Zille et al., Stroke, 2017

Systematic analysis identifies a mixture of cell death pathways in neurons: Necroptosis and ferroptosis

Model of Hemorrhagic Stroke					%Viability	
vehicle					100.00	
Hemin Toxicity		100µM hemin			50.14 ± 11.89	
Cell Death Mechanism	Subcategory	Cell Death Inhibitor	Target	Conc.	%Viability	
		3-Methyladenine	Phosphoinositide 3-kinase (PI3K), autophagosome formation	100-1500µM	46.62 ± 11.89 (500µM)	
	Macroautophagy	Bafilomycin A1	Endosomal acidification	0.0005-0.1µM	57.42 ± 16.15 (10nM)	
Autophagy	macroautophagy	Chloroquine diphosphate salt	Lysosomal function	0.1-50µM	62.87 ± 9.06 (5µM)	
		Rapamycin	Mechanistic target of rapamycin (mTOR), autophagy inducer	0.1-5µM	44.34 ± 10.71 (1µM)	
	Mitophagy	Mitochondrial division inhibitor 1	GTPase activity in dynamin-related protein Drp-1, abnormal mitophagy	0.1-100µM	53.32 ± 5.59 (50µM)	
Caspase-dependent apoptosis		z-VAD-fmk	Caspases	0.1-100µM	45.38 ± 9.87 (100µM)	
		Cycloheximide	Protein synthesis	0.1-100µM	47.37 ± 2.78 (100µM)	
		Cyclosporine A	Cyclophilin D (mitoch. permeability transition pore)	0.1-10µM	44.2 ± 10.25 (500nM)	
		SB203580	p38 mitogen-activated protein (MAP) kinase (p38)	1-30µM	52.61 ± 7.15 (5µM)	
		SP600125	c-JUN N-terminal kinase (JNK)	0.01-5µM	65.21 ± 5.78 (30μM)	
		Cycloheximide	Protein synthesis	0.1-100µM	47.37 ± 2.78 (0.1µM)	
		Actinomycin D	mRNA synthesis	0.001 - 1µM	53.44 ± 10.79 (1µM)	
	Ferroptosis	Ferrostatin-1	Canonical ferroptosis inhibitor, reactive lipid species (RLS)	0.01-1µM	82.68 ± 11.66 * (1µM)	
		Deferoxamine	Iron, hypoxia-inducible factor (HIF) prolyl hydroxylase domain- containing (PHD) inhibition	0.1-100µM	87.14 ± 8.53 * (100µM)	
Regulated		N-Acetylcysteine	Reactive oxygen species (ROS), RLS	100-2000µM	95.37 ± 7.08 * (1mM)	
Necrosis		Trolox, vitamin E analog	RLS	0.1-100µM	88.3 ± 16.01 * (100µM)	
		U0126	Mitogen-activated protein kinase kinase 1/2 (MEK 1/2)	1-20µM	82.45 ± 13.45 * # (10µM)	
	Deatherstein	PARP inhibitor III	Poly(ADP-ribose) polymerase 1 and 2 (PARP1 and 2)	0.1-50µM	55.80 ± 12.93 (50µM)	
	Partnanatos	Olaparib (AZD-2281, trade name Lynparza)	PARP1 and 2	1-20µM	44.64 ± 12.33 (20µM)	
	Necroptosis	Necrostatin-1	Receptor-interacting protein kinase 1 (RIP1)	10-250µM	77.4 ± 11.88 * (100µM)	

Ultrastructural Characteristics of Neuronal Death and White Matter Injury in Mouse Brain Tissues After Intracerebral Hemorrhage: Coexistence of Ferroptosis, Autophagy, and Necrosis

Qian Li^{1,2,3†}, Abigail Weiland^{1†}, Xuemei Chen⁴, Xi Lan¹, Xiaoning Han¹, Frederick Durham¹, Xi Liu¹, Jieru Wan¹, Wendy C. Ziai^{1,5}, Daniel F. Hanley⁵ and Jian Wang^{1*}

Front Neurol, 2018

Stroke

ORIGINAL CONTRIBUTION

Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis

Marietta Zille, Saravanan S. Karuppagounder, Yingxin Chen, Peter J. Gough, John Bertin, Joshua Finger, Teresa A. Milner, Elizabeth A. Jonas, Rajiv R. Ratan

Ferroptosis

- Iron-dependent form of non-apoptotic cell death
- Accumulation of lipid peroxidation products
- Involvement of glutathione peroxidase 4 (GPX4)
- Activation of Mitogen-activated protein kinase (MAPK)
- Lack of blebbing of the plasma membrane

Trends in Cell Biology

Evidence of ferroptosis in ICH: Induction of 5-Iipoxygenase (ALOX5)-dependent oxidized lipids

- Iron-dependent form of non-apoptotic cell death
- Accumulation of lipid peroxidation products
- Involvement of glutathione peroxidase 4 (GPX4)
- Activation of Mitogen-activated protein kinase (MAPK)
- Lack of blebbing of the plasma membrane

Karuppagounder et al., Ann Neurol, 2018

5-HETE – 5-hydroxyeicosatetraenoic acid, LTB4 – Leukotriene B4, LTE4 – Leukotriene E4

Evidence of ferroptosis in ICH: Stabilizing GPX4 rescues neurons from hemin-induced toxicity

- Iron-dependent form of non-apoptotic cell death
- Accumulation of lipid peroxidation products
- Involvement of glutathione peroxidase 4 (GPX4)
- Activation of Mitogen-activated protein kinase (MAPK)
- Lack of blebbing of the plasma membrane

Alim et al., Cell, 2019

Evidence of ferroptosis in ICH: Inducing GPX4 leads to improved outcome *in vivo*

- Iron-dependent form of non-apoptotic cell death
- Accumulation of lipid peroxidation products
- Involvement of glutathione peroxidase 4 (GPX4)
- Activation of Mitogen-activated protein kinase (MAPK)
- Lack of blebbing of the plasma membrane

Alim et al., Cell, 2019

Evidence of ferroptosis in ICH: Induction of ERK1/2 phosphorylation

- Iron-dependent form of non-apoptotic cell death
- Accumulation of lipid peroxidation products
- Involvement of glutathione peroxidase 4 (GPX4)
- Activation of Mitogen-activated protein kinase (MAPK)
- Lack of blebbing of the plasma membrane

Evidence of ferroptosis in ICH: Necrotic phenotype

- Iron-dependent form of non-apoptotic cell death
- Accumulation of lipid peroxidation products
- Involvement of glutathione peroxidase 4 (GPX4)
- Activation of Mitogen-activated protein kinase (MAPK)
- Lack of blebbing of the plasma membrane

Zille et al., Stroke, 2017

Classical, glutathione depletion-induced ferroptosis vs. hemin-induced ferroptosis

Criterion	Classical, glutathione depletion- induced ferroptosis	Hemin-induced ferroptosis
Reactive lipid species-dependent	+	+
Glutathione enhancing agents are protective	+	+
GPX4 forced expression is protective	+	+
Iron chelators are protective	+	+
ERK1/2 hyperactivation	+	+
12/15-lipoxygenase-dependent	+	-
Transcription-dependent	+	-
Nuclear translocation of phospho-ERK1/2	+	-
<i>Mkp3</i> forced expression is protective	+	-

Unbiased phosphoproteomics identifies different signatures in hemin- vs. erastin-induced ferroptosis

- 28022 phosphopeptides from 4871 proteins
- 452 peptides from 369 proteins altered after 5h hemin treatment
- 51 peptides from 49 proteins altered after 7h erastin treatment
- Only 9 peptides changed in both sets, of which 8 in the same direction
- KEA3 analysis
- Low ranks suggest greater enrichment
- MAPK1 enriched in erastin but not hemin treatment
- TLK2 and AKT1 among top 10 in hemin but not erastin treatment

Ferroptosis inhibitors block hemin-induced neuronal death

Model of Hemorrhagic Stroke					%Viability
Hemin Toxicity		vehicle			100.00
		100µM hemin			50.14 ± 11.89
Cell Death Mechanism	Subcategory	Cell Death Inhibitor	Target	Conc.	%Viability
	Macroautophagy	3-Methyladenine	Phosphoinositide 3-kinase (PI3K), autophagosome formation	100-1500µM	46.62 ± 11.89 (500µM)
		Bafilomycin A1	Endosomal acidification	0.0005-0.1µM	57.42 ± 16.15 (10nM)
Autophagy		Chloroquine diphosphate salt	Lysosomal function	0.1-50µM	62.87 ± 9.06 (5µM)
		Rapamycin	Mechanistic target of rapamycin (mTOR), autophagy inducer	0.1-5µM	44.34 ± 10.71 (1µM)
	Mitophagy	Mitochondrial division inhibitor 1	GTPase activity in dynamin-related protein Drp-1, abnormal mitophagy	0.1-100µM	53.32 ± 5.59 (50µM)
Caspase-dependent apoptosis		z-VAD-fmk	Caspases	0.1-100µM	45.38 ± 9.87 (100µM)
		Cycloheximide	Protein synthesis	0.1 -1 00µM	47.37 ± 2.78 (100μM)
		Cyclosporine A	Cyclophilin D (mitoch. permeability transition pore)	0.1-10µM	44.2 ± 10.25 (500nM)
		SB203580	p38 mitogen-activated protein (MAP) kinase (p38)	1-30µM	52.61 ± 7.15 (5µM)
		SP600125	c-JUN N-terminal kinase (JNK)	0.01-5µM	65.21 ± 5.78 (30µM)
		Cycloheximide	Protein synthesis	0.1-100µM	47.37 ± 2.78 (0.1µM)
	Ferroptosis	Actinomycin D	mRNA synthesis	0.001-1µM	53.44 ± 10.79 (1µM)
		Ferrostatin-1	Canonical ferroptosis inhibitor, reactive lipid species (RLS)	0.01-1µM	82.68 ± 11.66 * (1µM)
		Deferoxamine	Iron, hypoxia-inducible factor (HIF) prolyl hydroxylase domain- containing (PHD) inhibition	0.1-100µM	87.14 ± 8.53 * (100µM)
Regulated		N-Acetylcysteine	Reactive oxygen species (ROS), RLS	100-2000µM	95.37 ± 7.08 * (1mM)
Necrosis		Trolox, vitamin E analog	RLS	0.1-100µM	88.3 ± 16.01 * (100µM)
		U0126	Mitogen-activated protein kinase kinase 1/2 (MEK 1/2)	1-20µM	82.45 ± 13.45 * # (10µM)
	Parthanatos	PARP inhibitor III	and 2 (PARP1 and 2)	0.1-50µM	55.60 ± 12.95 (50µM)
	Parthanatos	Olaparib (AZD-2281, trade name Lynparza)	PARP1 and 2	1-20µM	44.64 ± 12.33 (20µM)
	Necroptosis	Necrostatin-1	Receptor-interacting protein kinase 1 (RIP1)	10-250µM	77.4 ± 11.88 * (100µM)

Zille et al., Stroke, 2017

Studying the rich biology of these pathways gives rise to therapeutics

Model of Her	norrhagic Stroke				%Viability
Hemin Toxicity		vehicle 100µM hemin			100.00
					50.14 ± 11.89
Cell Death Mechanism	Subcategory	Cell Death Inhibitor	Target	Conc.	%Viability
		3-Methyladenine	Phosphoinositide 3-kinase (PI3K), autophagosome formation	100-1500µM	46.62 ± 11.89 (500µM)
	Magraphanham	Bafilomycin A1	Endosomal acidification	0.0005-0.1µM	57.42 ± 16.15 (10nM)
Autophagy	Macroautophagy	Chloroquine diphosphate salt	Lysosomal function	0.1-50µM	62.87 ± 9.06 (5µM)
		Rapamycin	Mechanistic target of rapamycin (mTOR), autophagy inducer	0.1-5µM	44.34 ± 10.71 (1µM)
	Mitophagy	Mitochondrial division inhibitor 1	GTPase activity in dynamin-related protein Drp-1, abnormal mitophagy	0.1 -1 00µM	53.32 ± 5.59 (50µM)
		z-VAD-fmk	Caspases	0.1-100µM	45.38 ± 9.87 (100µM)
		Cycloheximide	Protein synthesis	0.1-100µM	47.37 ± 2.78 (100µM)
Caspase-dependent apoptosis		Cyclosporine A	Cyclophilin D (mitoch. permeability transition pore)	0.1-10µM	44.2 ± 10.25 (500nM)
		SB203580	p38 mitogen-activated protein (MAP) kinase (p38)	1-30µM	52.61 ± 7.15 (5µM)
		SP600125	c-JUN N-terminal kinase (JNK)	0.01-5µM	65.21 ± 5.78 (30µM)
		Cycloheximide	Protein synthesis	0.1-100µM	47.37 ± 2.78 (0.1µM)
		Actinomycin D	mRNA synthesis	0.001-1µM	53.44 ± 10.79 (10M)
	Ferroptosis	Ferrostatin-1	Canonical ferroptosis inhibitor, reactive lipid species (RLS)	0.01-1µM	82.68 ± 11.66 * (1µM)
F Regulated Necrosis		Deferoxamine	Iron, hypoxia-inducible factor (HIF) prolyl hydroxylase domain- containing (PHD) inhibition	0.1-100µM	87.14 ± 8.53 * (100μM)
		N-Acetylcysteine	Reactive oxygen species (ROS), RLS	100-2000µM	95.37 ± 7.08 * (1mM)
		analog	RLS	0.1-100µM	00.0 ± 10.01 ± (100μM)
		U0126	Mitogen-activated protein kinase kinase 1/2 (MEK 1/2)	1-20µM	82.45 ± 13.45 * #
	Deatherstein	PARP inhibitor III	Poly(ADP-ribose) polymerase 1 and 2 (PARP1 and 2)	0.1-50µM	55.80 ± 12.93 (50µM)
P	Parthanatos	Olaparib (AZD-2281, trade name Lynparza)	PARP1 and 2	1-20µM	44.64 ± 12.33 (20µM)
Ne	Necroptosis	Necrostatin-1	Receptor-interacting protein kinase	10-250µM	77.4 ± 11.88 * (100µM)

Zille et al., Stroke, 2017

Inhibition of neuronal ferroptosis protects hemorrhagic brain

Qian Li, ..., Brent R. Stockwell, Jian Wang

JCI Insight. 2017;2(7):e90777. https://doi.org/10.1172/jci.insight.90777.

Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial

Magdy Selim, Lydia D Foster, Claudia S Moy, Guohua Xi, Michael D Hill, Lewis B Morgenstern, Steven M Greenberg, Michael L James, Vineeta Singh, Wayne M Clark, Casey Norton, Yuko Y Palesch, Sharon D Yeatts, on behalf of the i-DEF Investigators*

Lancet Neurology, 2019

N-Acetylcysteine Targets 5 Lipoxygenase-Derived, Toxic Lipids and Can Synergize With Prostaglandin E₂ to Inhibit Ferroptosis and Improve Outcomes Following Hemorrhagic Stroke in Mice Annals of Neurology, 2018

Saravanan S. Karuppagounder, PhD,^{1,2} Lauren Alin, BS,^{1,2} Yingxin Chen, MD,^{1,2} David Brand, BS,^{1,2} Mogan W. Bourassa, PhD,^{1,2} Kriston Diotrich, BS,³

Hemin-Induced Death Models Hemorrhagic Stroke and Is a Variant of Classical Neuronal Ferroptosis

https://doi.org/10.1523/JNEUROSCI.0923-20.2021

What about other cell types in the brain?

Systematic literature review on brain endothelial cell death in stroke

2019

Review

The impact of endothelial cell death in the brain and its role after stroke: A systematic review

Marietta Zille^{1,*}, Maulana Ikhsan¹, Yun Jiang^{1,2}, Josephine Lampe^{1,2}, Jan Wenzel^{1,2} and Markus Schwaninger^{1,2,*}

 Brain endothelial cell death occurs both rapidly and at later time points

www.cell-stress.com

- Cell death signaling is complex and includes multiple cell death subroutines (apoptosis, autophagy, necroptosis, and maybe ferroptosis)
- Data on brain endothelial cell death after brain hemorrhage is limited

Hemin induces brain endothelial cell death

Hemin [M]

unpublished data

Hemin-induced brain EC death is partially rescued by ferroptosis inhibitors and MDA expression is increased

Hemin

/lodel of hen	Viability[%]	100%			
lemin	Vehicle			100	
oxicity	350 µM hemin			18.85 (17.84)	
ell death nechanism	Cell death inhibitor	Target	Conc.	Viability[%]	
	Actinomycin D	mRNA synthesis	1 μΜ	20.50 (20.38)	
	Cycloheximide	Protein Synthesis	100 µM	16.36 (7.53)*	
erroptosis	Ferrostatin-1	Canonical ferroptosis inhibitor reactive lipid species (RLS)	r,1 μM	20.17 (14.81)	
	Deferoxamine	Iron, hypoxia induced factor (HIF prolyl hydroxylase domain-containing inhibition) 100 μM	42.60 (25.08)*	
	N-Acetylcysteine	Reactive oxygen species (ROS), RLS	2000 µM	43.83 (17.14)*	
	Trolox, vitamin E analog	RLS	100 µM	42.00 (31.09)*	
	U0126	Mitogen activated protein kinase kinase 1/2 (MEK 1/2)	20 μΜ	23.83 (23.03)	
	U0124	U0126 inactive control	20 µM	37.734 (13.924)	20%

What is the contribution of axonal degeneration in ICH?

Systematic literature review on axonal degeneration in brain hemorrhage

- Occurs in patients as early as 24 h and in animal models as early as 6 h
- Correlates with hematoma volume and worsening of clinical outcomes
- Occurs in various locations, especially in the hemorrhagic center and perihemorrhagic zone
- Extent increases over time
- Beneficial therapeutic interventions:
 - Target neuroinflammation
 - Improve energy metabolism
 - Inhibit microtubule breakdown
 - Stimulate axonal growth and regeneration

Studying axonal degeneration after brain hemorrhage

Alex Palumbo

Transparent bottom

Device

Studying axonal degeneration after brain hemorrhage

Patent (European Patent Office, file number: 20152016.0); Palumbo et al., Cells, 2021

Quantitative analysis of axonal degeneration using deep learning: EntireAxon CNN

Patent (European Patent Office, file number: 20152016.0) Grüning et al., 2020a; Menon et al., 2020; Grüning et al., 2020b; Palumbo et al., Cells, 2021

Hemin induces axonal degeneration in a time- and concentration-dependent manner

Do degenerating axons show features of ferroptosis?

Expression of ferroptotic markers in hemin-induced AxD

Do inhibitors of ferroptosis abrogate hemin toxicity to axons?

Ferroptosis inhibitors do not protect against hemin-induced axonal degeneration

unpublished data

10

100

Conclusions

- Clot-derived neuronal toxicity after ICH shares features of ferroptosis and necroptosis
- Studying the rich biology of cell death mechanisms gives rise to novel therapeutic approaches, including combinatorial strategies
- The mechanisms of death of the neuronal cell body may be different from axonal degeneration that may be different from brain endothelial cell death

 \rightarrow We need to target multiple cell types and compartments for therapeutic approaches to be successful in hemorrhagic stroke

Proposed model for a combinatorial therapy in ICH

Boltze,, Zille, Front Aging Neurosci, 2021

frontiers

Zille Lab (Current & Former)

Amir Pasokh Hari Baskar Balasubramanian Dr. Alex Palumbo Dr. Maulana Ikhsan Alessa Pabst Svenja Landt Lara Heckmann Inga Hellige Sören Pietsch Narayan Kumar Menon Katja Grau Frederike Heiden Floradel Bürgel Sirjan Chhatwal Sarah Grabner Sarah Hinterhölzer Johann Nguyen Dominik Kahr Julia Fastner

Acknowledgements

💹 Fraunhofer

ACADEMY OF

SCIENCES

Collaborators

Rajiv R. Ratan, Burke/Cornell, USA Amit Kumar Saravanan Karuppagounder **Yingxin Chen**

Alma L. Burlingame, U California, USA Juan A. Oses-Prieto

Sara R. Savage, **Baylor College of Medicine, USA**

Amir Madany Mamlouk, U Luebeck, GER Philipp Gruening

Markus Schwaninger, U Luebeck, GER Josephine Lampe

Bundesministerium für Bildung und Forschung