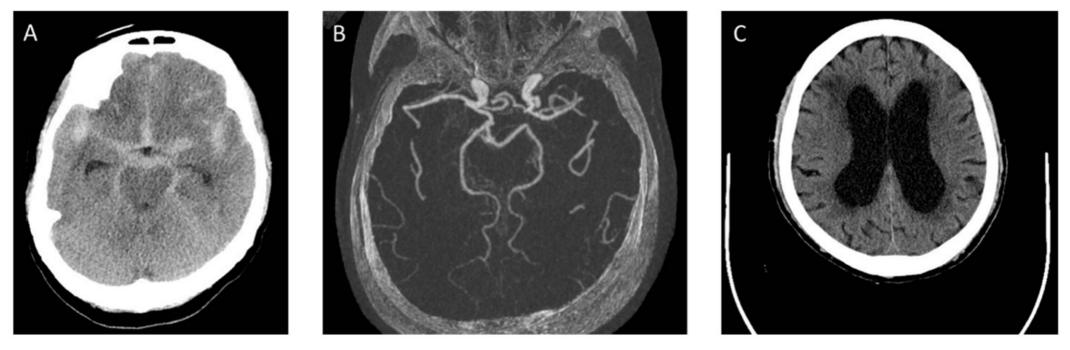


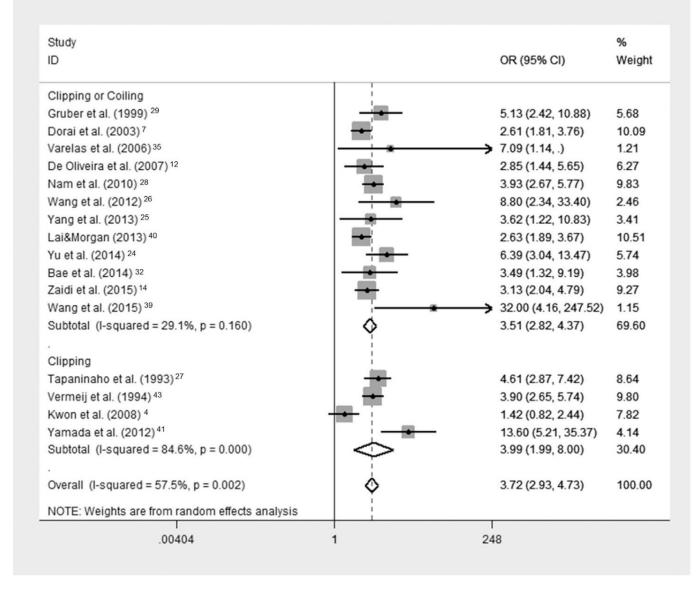
ASSOCIATION BETWEEN CEREBRAL HEMORRHAGE VOLUME AND ACUTE HYDROCEPHALUS IN ANEURYSMAL SUBARACHNOID HEMORRHAGE: A SEMIAUTOMATIC MEASUREMENT STUDY

Gema Bravo-Garrido¹, Antonio José Vargas-López^{1,2}, Miriam Fernández-Gómez³, Mario Gomar-Alba³, Laura Amaya-Pascasio⁴, Patricia Martínez-Sánchez^{2,4}

¹Department of Neurosurgery, Torrecárdenas University Hospital. ²Faculty of Health Sciences, Centre for Health Research (CEINSA), University of Almeria. ³Department of Radiology, Torrecárdenas University Hospital, ⁴Department of Neurology and Stroke Centre, Torrecárdenas University Hospital


Almería, Spain.

BACKGROUND


- Shunt-dependent acute hydrocephalus (SDAHC) is a common complication that can arise within the first 72 hours following aneurysmal subarachnoid hemorrhage (aSAH).
- Incidence of SDAHC ranges from 20-30%.

Kuo, L.-T.; Huang, A.P.-H. The Pathogenesis of Hydrocephalus Following Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2021, 22, 5050.

BACKGROUND

- Potential links between intracranial blood volumes and location and SDAHC. No threshold has been established
- Overall, knowledge about predictors of acute hydrocephalus remains limited.

Figure 10. Forest plot of intraventricular hemorrhage as a risk factor for shunt-dependent hydrocephalus after

aneurysmal subarachnoid hemorrhage. Cl, confidence interval; OR, odds ratio.

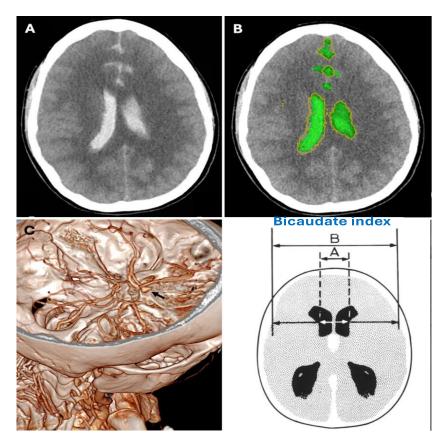
Xie Z et al Predictors of Shunt-dependent Hydrocephalus After Aneurysmal Subarachnoid Hemorrhage? A Systematic Review and Meta-Analysis. World Neurosurg. 2017.

HYPOTHESIS

Quantifying cerebral hemorrhage — both in the subarachnoid space and the intraventricular and intraparenchymal regions — on the initial emergency brain-CT could be associated with the development of **SDAHC** within the first 72 hours of symptom onset.

OBJECTIVES

- To investigates the association between semiautomatic measurement of cerebral hemorrhage volumes in subjects with aSAH and the onset of shunt-dependent acute hydrocephalus.
- To establish a bleeding volume threshold associated with SDAHC.


METHODS

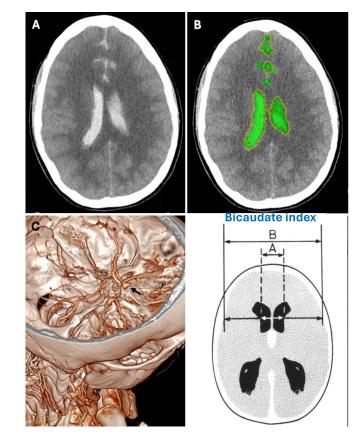
Retrospective observational study.

Population:

Consecutive aSAH patients admitted to a specialized referral hospital (2016-2021).

METHODS

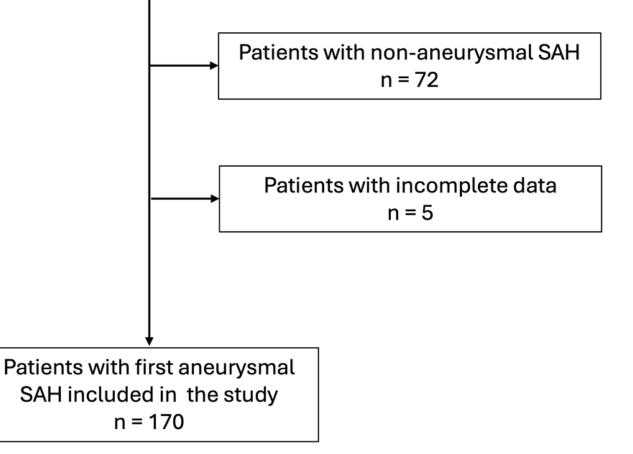
Variables:


- Severity: GCS, WFNS scale
- Risk of vasospasm at admission: Fisher grade (amount of SAH on CT scans)
- Hemorrhage Volumes (AW Server software):
 - Subarachnoid hemorrhage
 - Intraventricular hemorrhage (IVH)
 - Intraparenchymal hemorrhage (IPH)
 - Total hemorrhage (TH)

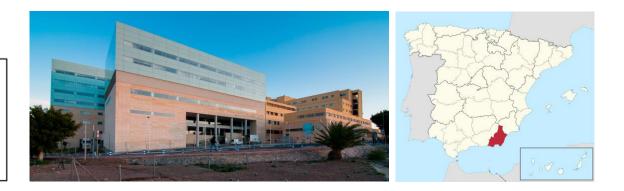
- Bicaudate index (> 0.2 indicative of the need for shunting)

Main outcome: SDAHC (need for external ventricular drainage (EVD) or ventriculoperitoneal (VP) shunt placement within the first 72 hours post-diagnosis)

Statistical analysis: ROC, Multivariate logistic regression analyses,



RESULTS


Patients with first spontaneous SAH admitted to Torrecárdenas University Hospital (2016-2021) n = 247

RESULTS

Patients with first spontaneous SAH admitted to Torrecárdenas University Hospital (2016-2021) n = 247

Patients with non-aneurysmal SAH n = 72 Patients with incomplete data n = 5 111 (65.3%) wo

Patients with first aneurysmal SAH included in the study n = 170 111 (65.3%) women Mean age 58.5 years (SD 14.6) Fifty-five patients (32.4%) presented **SDAHC**

	Variable	Total	Non-SDAHC	SDAHC	Р	
		(N=170)	(N= 115)	(N= 55)	P	
	Demographic data and comorbidities					
RESULTS	Female, n (%)	111 (65.3)	77 (67)	34 (61.8)	0.510	
negueig	Age, mean (SD), years	58.5 (14.6)	57.6 (14.4)	60.5 (14.8)	0.120	
	Smoker, n (%)	64 (37.6)	47 (40.9)	17 (30.9)	0.210	
	Alcoholism, n (%)	21 (12.4)	13 (11.3)	8 (14.5)	0.548	
Baseline characteristics	Drugs, n (%)	5 (2.9)	4 (3.5)	1 (1.8)	0.549	
	Glycaemia, median (IQR), mg/dL	146.5 (62)	135 (53)	169 (62)	<0.001	
	Hypertension, n (%)	70 (41.2)	46 (40)	24 (43.6)	0.652	
	Dyslipidemia, n (%)	47 (27.6)	29 (25.2)	18 (32.7)	0.306	
	Diabetes mellitus, n (%)	27 (15.9)	16 (13.9)	11 (20)	0.310	
	Ischemic cardiopathy, n (%)	8 (4.7)	5 (4.3)	3 (5.5)	0.750	
	Stroke, n (%)	6 (3.5)	3 (2.6)	3 (5.5)	0.347	
	Atrial fibrillation, n (%)	10 (5.9)	8 (7)	2 (3.6)	0.389	
	Heart failure, n (%)	6 (3.5)	3 (2.6)	3 (5.5)	0.347	
	COPD, n (%)	6 (3.5)	3 (2.6)	3 (5.5)	0.347	
	Kidney failure, n (%)	5 (2.9)	3 (2.6)	2 (3.6)	0.711	
	Liver disease, n (%)	6 (3.5)	6 (5.2)	0 (0)	0.085	
	Severity and risk of vasospasm on admiss	ion				
	GCS on admission, median (IQR)	14 (6)	15 (4)	11 (10)	<0.001	
	Fisher scale, median (IQR)	4 (1)	3 (2)	4 (0)	<0.001	
	Fisher grade 3-4, n (%)	125 (73.5)	77 (67)	48 (87.3)	0.005	
	WFNS scale, median (IQR)	2 (3)	1 (1)	4 (3)	<0.001	
	Blood Pressure					
	SBP, median (IQR)	157.5 (40.3)	159 (40)	170 (42)	0.384	
	DBP, median (IQR)	88 (24.3)	90 (21)	85 (30)	0.149	
	Prior treatments					
	Statins, n (%)	38 (22.4)	22 (19.1)	16 (29.1)	0.145	
	Antiplatelet agents, n (%)	21 (12.4)	13 (11.3)	8 (14.5)	0.548	
	Anticoagulants, n (%)	10 (5.9)	8 (7)	2 (3.6)	0.389	
	SSRIs, n (%)	26 (15.3)	17 (14.8)	9 (16.4)	0.789	

COPD: Chronic Obstructive Pulmonary Disease; GCS: Glasgow Coma Scale; IQR: Interquartile Range; SD: Standard Deviation; SDAHC: shuntdependent acute hydrocephalus; SSRIs: Selective Serotonin Reuptake Inhibitors; WFNS: World Federation of Neurosurgical Societies Scale.

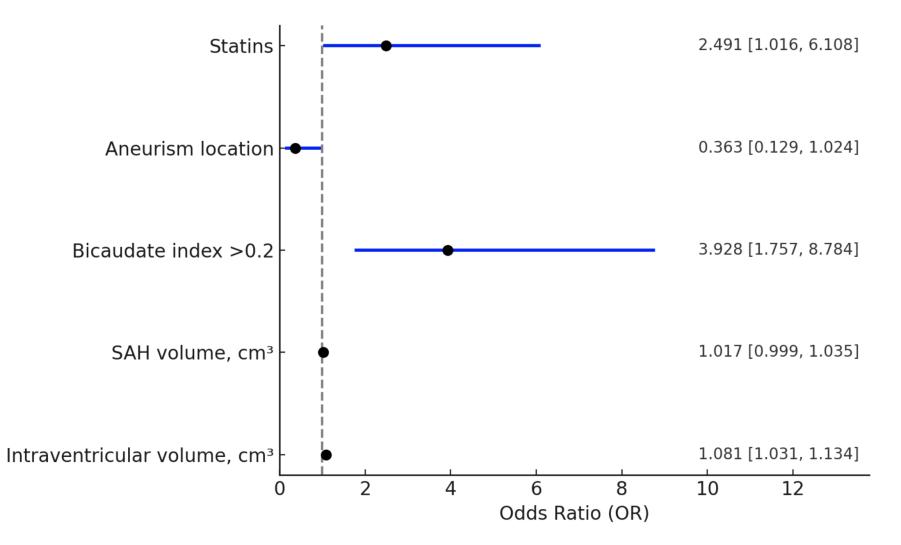
RESULTS

Neuroimaging data and

hemorrhage volumes

IQR: Interquartile Range; SAH: subarachnoid hemorrhage; SDAHC: shunt-dependent acute hydrocephalus; IPH: intraparenchymal hemorrhage; IVH: intraventricular hemorrhage.

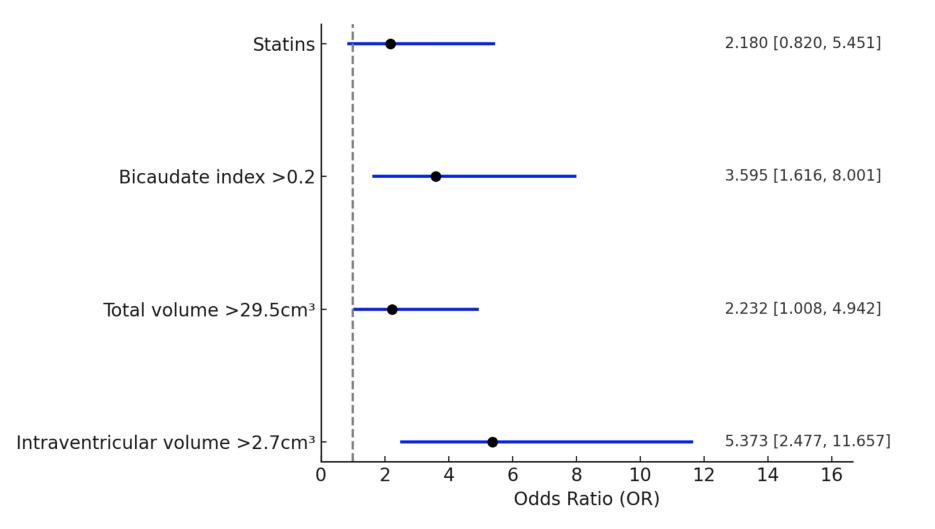
* Measured in CT angiography and digital subtraction angiography (DSA)
** Measured in brain-CT


Variable	Total	Non-SDAHC	SDAHC	P			
Variable	(N=170)	(N=115)	(N=55)	P			
Vascular territory*							
Anterior (vs posterior) circulation, n (%)	145 (85.3)	101 (87.8)	44 (80)	0.178			
Aneurysm characteristics**							
Aneurysm size (median, IQR)	6 (5.1)	8 (3.9)	9 (5.1)	0.34			
Multiple aneurysms, n (%)	51 (30)	34 (29.6)	17 (30.9)	0.858			
Bicaudate index*							
Bicaudate index (median, IQR)	0.19	0.17	0.23	<0.00			
	(0.08)	(0.01)	(0.01)	1			
Bicaudate index > 0.2	73 (43.5)	33 (29.2)	40 (72.7)	<0_00 1			
Hemorrhage volumetry*							
Total hemorrhage (median, IQR) cm ³	28.5 (33.6)	23.5 (32)	38.27 (38.7)	<0.00 1			
SAH (median, IQR) cm ³	19.7 (27.8)	18.9 (27.4)	24.5 (40)	0.088			
IPH (median, IQR) cm ³	0 (0)	0 (0)	0 (0)	0.224			
IVH (median, IQR) cm ³	0 (7.2)	0 (2.3)	6.7 (19.3)	<0.00 1			
Dichotomized volumes*							

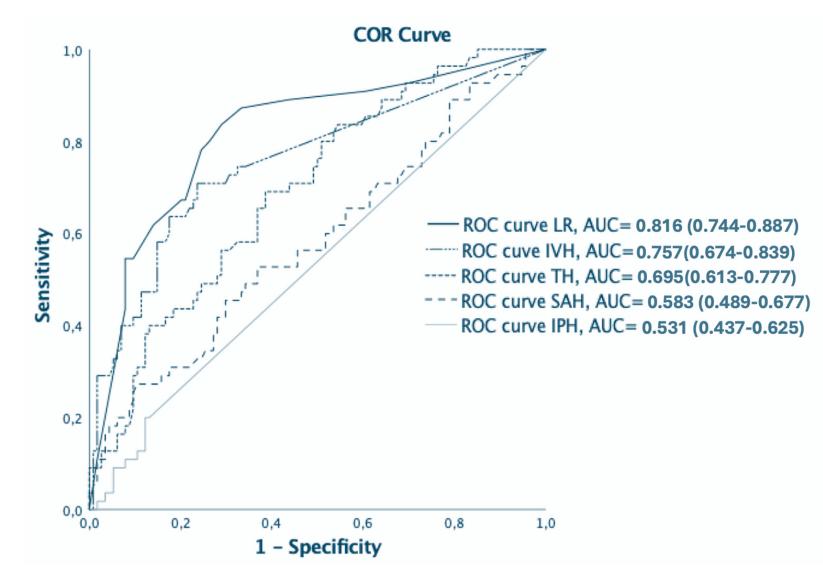
RESULTS Neurosurgical treatment

	Total	Non-SDAHC	SDAHC	D				
Variable	(N=170)	(N=115)	(N=55)	P				
Treatment modalities								
Endovascular Coiling, n (%)	146 (85.9)	99 (86.1)	47 (85.5)	0.912				
Neurosurgical clipping, n (%)	0 (0)	0 (0)	0 (0)	-				
Decompressive craniectomy, n (%)	14 (8.2)	10 (8.7)	4 (7.3)	0.752				
Acute stage shunting (<72h)								
EVD alone, n (%)	13 (7,6)	0 (0)	13 (23,6)	<0,001				
EVD followed by VP shunt, n (%)	13 (7,6)	0 (0)	13 (23,6)	<0,001				
VP shunt alone, n (%)	29 (17,1)	0 (0)	29 (52 , 7)	<0,001				
Subacute stage shunting (3-14 days)								
VP shunt, n (%)	4 (2,4)	4 (3,5)	0 (0)	0,306				
Late shunting (>14 days)								
VP shunt, n (%)	9 (5,3)	9 (7,8)	0 (0)	0,032				

MULTIVARIATE ANALYSIS OF FACTORS RELATED TO THE DEVELOPMENT OF SHUNT-DEPENDENT ACUTE HYDROCEPHALUS


Model 1: Volumetry of the hemorrhage as continuous variable

Adjusted by baseline data and previos treatments, SAH severity (GCS, Fisher grade, WFNS grade), glycaemia, diastolic BP, aneurism locations, bicaudate index, volumetry of the hemorrhage


MULTIVARIATE ANALYSIS OF FACTORS RELATED TO THE DEVELOPMENT OF SHUNT-DEPENDENT ACUTE HYDROCEPHALUS

Model 2: Volumetry of the hemorrhage as volumetry of the hemorrhage as dichotomized variables

Adjusted by baseline data and previos treatments, SAH severity (GCS, Fisher grade, WFNS grade), glycaemia, diastolic BP, aneurism locations, bicaudate index. volumetry of the hemorrhage

ROC curves

IVH volumes: AUC 0.757 (95% CI: 0.674-0.839; p < 0.001).

IVH volume > 2.7 cm: Sensitivity 70.9% and Specificity 77.2% for predicting SDAHC TH volumes > 29.5 cm: Sensitivity 69.1% and a Specificity 61.4% for predicting SDAHC

CONCLUSIONS

- To the best of our knowledge, this is the first study to demonstrate an association between semiautomated measurement of hemorrhage volume from brain CT and the development of SDAHC in aSAH patients.
- This association was independent of other prognostic factors, including demographic and clinical data.
- Despite the presence of blood in various compartments (cisternal, intraventricular, or intraparenchymal), the most significant prognostic indicators for SDAHC were intraventricular bleeding and the total hemorrhage volume, as well as the bicaudate index.

CONCLUSIONS

- To the best of our knowledge, this is the first study to demonstrate an association between semiautomated measurement of on morthage volume from brain CT and the development of SDAH erventing attents.
 This association was independent intelling prognostic factors, including demographic and clinication and invarious compartments (cisternal,
- e of blood in various compartments (cisternal, De intraventricular, or intraparenchymal), the most significant prognostic indicators for SDAHC were intraventricular bleeding and the total hemorrhage volume, as well as the bicaudate index.

ASSOCIATION BETWEEN CEREBRAL HEMORRHAGE VOLUME AND ACUTE HYDROCEPHALUS IN ANEURYSMAL SUBARACHNOID HEMORRHAGE: A SEMIAUTOMATIC MEASUREMENT STUDY

Gema Bravo-Garrido¹, Antonio José Vargas-López^{1,2}, Miriam Fernández-Gómez³, Mario Gomar-Alba³, Laura Amaya-Pascasio⁴, Patricia Martínez-Sánchez^{2,4}

¹Department of Neurosurgery, Torrecárdenas University Hospital. ²Faculty of Health Sciences, Centre for Health Research (CEINSA), University of Almeria. ³Department of Radiology, Torrecárdenas University Hospital, ⁴Department of Neurology and Stroke Centre, Torrecárdenas University Hospital

Almería, Spain.

