NEW INSIGHTS AND PERSPECTIVES ON INTRACEREBRAL HEMORRHAGE:

A COMPREHENSIVE UPDATE

RICORS-ICTUS Instituto

Instituto de Salud Carlos III

8/10/24

Barcelona

Dr. Jordi Jiménez-Conde Neurovascular Research Group Hospital del Mar Research Institut

What is written

in the **Genes**

GENETICS. WHY IT MATTERS

- Heritability of ICH: 30-50%

*Heritability: the proportion of variation in a trait explained by inherited genetic variants. In other words, it's a way to measure how much the differences in people's DNA can explain the differences in their traits.

GENETICS. WHY IT MATTERS

- Heritability of ICH: 30-50%
- Understanding disease mechanisms (occurrence, evolution, complications..)
- Identify Individual Risk (Biomarkers)
- Predict outcome. Prognosis. (Biomarkers)
- Discover new pathways and potential therapeutic targets
 - Prevention targets
 - Treatment of the event and complications
- Response and risk of treatments.

GENETICS IN CEREBROVASCULAR DISEASES

BRIEF HISTORICAL JOURNEY

- Monogenic Diseases

Some Mendelian diseases

	Inheritance	Gene	Stroke mechanism	Associated clinical features	Diagnostic test
lschaemic stroke					
CADASIL	Autosomal dominant	NOTCH3	Small-vessel disease	Migraine with aura	Mutational screening, skin biopsy
CARASIL	Autosomal recessive	HTRA1	Small-vessel disease	Premature baldness; severe low back pain; spondylosis deformans or disk herniation	Mutational analysis
Fabry's disease	X-linked	GAL	Large-artery disease and small-vessel disease	Angiokeratoma; neuropathic pain; acroparaesthesia; hypohydrosis; corneal opacities; cataract; renal and cardiac failure	α galactosidase activity, mutational screening
MELAS	Maternal	mtDNA	Complex (microvascular and neuronal factors)	Developmental delay; sensorineural hearing loss; short stature; seizures; episodic vomiting; diabetes; migraine-like headache; cognitive decline	Muscle biopsy, mutational analysis of mtDNA
Sickle- cell disease	Autosomal recessive	HBB	Large-artery disease, small-vessel disease, haemodynamic insufficiency	Pain crises; bacterial infection; vaso-occlusive crises; pulmonary and abdominal crises; anaemia; myelopathy; seizure	Peripheral blood smear, electrophoresis, mutational analysis
Homocystinuria	Autosomal recessive	CBS and others	Large-artery disease, cardioembolism, small- vessel disease, arterial dissection	Mental retardation; atraumatic dislocation of lenses; skeletal abnormalities (Marfan-like); premature atherosclerosis; thromboembolic events	Urine analysis, measurement of concentrations of homocysteine and methionine in plasma (mutational screening)
Marfan's syndrome	Autosomal dominant	FBN1	Cardioembolism and arterial dissection	Pectus carinatum or excavatum; upper-to-lower- segment ratio <0.86, or arm-span-to-height ratio >1.5; scoliosis >20%; ectopia lentis; dilation or dissection of the ascending aorta; lumbosacral dural ectasia	Clinical diagnosis (mutational screening)
Ehlers-Danlos syndrome type IV	Autosomal dominant	COL3A1	Arterial dissection	Easy bruising; thin skin with visible veins; characteristic facial features; rupture of arteries, uterus, or intestines	Biochemical studies, mutational screening
Pseudoxanthoma elasticum	Autosomal recessive	ABCC6	Large-artery disease and small-vessel disease	Skin changes (increased elasticity and yellow-orange papular lesions); ocular changes (angioid streaks); hypertension	Skin biopsy, mutational screening
Intracerebral haen	norrhage				
Familial cerebral amyloid angiopathy	Autosomal dominant	APP	Rupture of cortical cerebral small vessels	Cerebral lobar macrohaemorrhages and microhaemorrhages; white-matter lesions; cognitive impairment	Brain biopsy, mutational screening
COL4A1-related intracerebral haemorrhage	Autosomal dominant	COL4A1	Rupture of cortical and subcortical cerebral small vessels	Infantile hemiparesis; congenital porencephaly; white- matter lesions; cerebral macrohaemorrhages and microhaemorrhages (lobar and non-lobar); transient ischaemic attacks	Clinical diagnosis, mutational screening

CADASIL=cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. CARASIL=cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. MELAS=mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke. mtDNA=mitochondrial DNA.

GENETICS IN CEREBROVASCULAR DISEASES

- Monogenic Diseases
- Candidate Genes studies late 90's (many pitfalls).
- 2000. TECHNICAL ADVANCES

CACCCATGAAT TGAAACAAGATG CTGCTGCTCTCCGGGGGG CCACTGGAGGGTGGCCC GCATATGCAGGAAGCGG *BCCTCCTGACTTTCCTG* TCCCAGGCCAGTGC GCTCGGGAGGTGG

THE HUMAN GENOME PROJECT

Finste competete sequencing 2003 man genome. February, 2001

GENETICS IN CEREBROVASCULAR DISEASES

- BRIEF HISTORICAL JOURNEY
- Monogenic Diseases
- Candidate Genes studies late 90's (many pitfalls).
- 2000. TECHNICAL ADVANCES

• • • •

Advances in massive Genotyping

- Chips GWAs (2005): 100.000 SNPs
- Chips GWAs (2015): 5,000.000 SNPs
- Chips GWAS (2017): 5,000,000 SNPs + rare variants + CNVS

Concepts:

- Identity by State (IBS)
- Identity by Descendent (IBD)
- Principal Components (PC)

GENETICS IN CEREBROVASCULAR DISEASES

BRIEF HISTORICAL JOURNEY

- Monogenic Diseases
- Candidate Genes studies late 90's (many pitfalls).
- 2000. TECHNICAL ADVANCES

Your plan

- PROBLEMS/DIFFICULTIES (Complex designs, sample size, missing Here wility, complex interactions, genomic designs...

Genetics in Complex Diseases

Population Stratification

Common Variants. Low effects

CONSORTIA

Genetic Investigation of ANthropometric Traits

ICBP

International Consortium for Blood Pressure

International Stroke Genetics Consortium

ISGC

CARDIoGRAMplusC4D

CONSORCIO ESPAÑOL DE GENÉTICA DEL ICTUS

MIGen

Myocardial Infarction Genetics Consortium

Melinda C Mills, et al. Commun. Biol. 2019 Jan 7;2:9. doi: 10.1038/s42003-018-0261-x. eCollection 2019.

Melinda C Mills, et al. Commun. Biol. 2019 Jan 7;2:9. doi: 10.1038/s42003-018-0261-x. eCollection 2019.

National Human Genome Research Institute

www.genome.gov/GWAStudies www.ebi.ac.uk/fgpt/gwas/

What we know until now...

MONOGENIC DISEASES

TABLE 5 | Genetics variants/genes related to perinatal and pediatric ICH and ICH of Mendelian forms.

Ref.	Gene name/Loci and Abb.	Variants	OR (95% CI)	Study population	Cases/Control	Study type	Notes
He et al. (2019)	Factor VII (F7)	IVS7 + 1G	_	Asian	2 cases	Case report	P-ICH
Cheng et al. (2019)	μ-opioid receptor (OPRM1)	A118G	1.55 (1.00–2.39)	Asian	167/163	Candidate gene: CCS	P-ICH
Demmert et al. (2015)	Fucosyltransferase 2 (FUT2)	G428A	1.20 (0.99–1.40)	European	2404	Candidate gene: PCS	P-ICH
Unal et al. (2014)	Protein C (PROC)	T903C	_	European	1case	Case report	P-ICH
Berber et al. (2018)	Vitamin K epoxide reductase complex subunit 1 (VKORC1)	G1639A	3.63 (1.32–9.94)	European	51/51	Candidate gene: CCS	P-ICH
Herrmann et al. (2005)	Factor X (F10)	Gly380Arg	_	European	6 cases	Case report	P-ICH
Göpel et al. (2002)	Factor XIII (F13)	Val34Leu	_	European	832	Candidate gene: PCS	P-ICH
Van Broeckhoven et al. (1990)	Amyloid precursor protein (APP)	_	-	European	2 families (20 cases)	Case series	HCHWA-D
Palsdottir et al. (1988) and Jensson et al. (1989)	Cystatin C (CST3)	-	_	European	8 families (22 cases)	Case series	HCCAA and ICH
Denier et al. (2004)	Krev interaction trapped protein 1 (<i>KRIT1</i>)	_	-	European	64 families (202 cases)	Case series	CCM and ICH
Cottin et al. (2007)	Activin receptor-like kinase 1 (ACVRL1) and Endoglin (ENG)	_	_	European	126 cases	Case series	HHT and ICH
Gould et al. (2006)	Collagen type IV alpha 1 chain (COL4A1)	-	-	European	1 family (11 cases)	Case series	BSVD1 and ICH

CCS, case control study; PCS, prospective cohort study; ICH, intracerebral hemorrhage; P-ICH, perinatal and pediatric ICH; HCHWA-D, human hereditary cerebral hemorrhage with amyloidosis of the Dutch type; HCCAA, hereditary cystatin C amyloid angiopathy; CCM, cerebral cavernous malformations; HHT, hereditary hemorrhagic telangiectasia; BSVD1, brain small vessel disease 1; Ref., reference; Abb., Abbreviation; OR, odds ratio.

SPORADIC COMPLEX DISEASE

TABLE 1 | Genetic variants related to ICH risk in different location (Candidate gene approach).

Ref.	Gene name/Loci and Abb.	Variants	OR (95% CI)	Study population	Cases/Control	Study type	Notes
Pera et al. (2008)	Glutathione peroxidase 1 (GPX1)	C593T	2.36 (1.31–4.26)	European	192/192	Candidate gene: CCS	LICH
Biffi et al. (2012)	Complement C3b/C4b receptor 1 (CR1)	rs6656401	1.61 (1.19–2.17)	American	369 (89 CAA-ICH)/324	Candidate gene: CCS	CAA-ICH
Dardiotis et al. (2017)	Integrin subunit alpha V (<i>ITGAV</i>)	rs7565633	0.56 (0.37–0.86) (Dom)	European	443/572	Candidate gene: CCS	LICH
Chen et al. (2012)	Protein kinase C eta (<i>PRKCH</i>)	1425 G/A	1.73 <mark>(</mark> 1.01– 2.9)	Asian	303 (266 DICH/37 LICH)/381	Candidate gene: CCS	LICH
Chen et al. (2008)	Angiotensin I converting enzyme (ACE)	ACE I/D and A240T (T-D)	2.7 (1.1–6.5)	Asian	217 DICH/283	Candidate gene: CCS	DICH in females
Chen et al. (2015)	Tissue metalloproteinase inhibitor 2 (<i>TIMP2</i>)	rs7503607	2.45 (1.37–4.38) (Add)	Asian	396 DICH/376	Candidate gene: CCS	DICH in subjects ≥ 65 years, especially in males
		rs7503726	0.29 (0.10–0.84) (Rec)				DICH in females \geq 65 years
Chen et al. (2015)	Matrix Metalloproteinase 2 (<i>MMP2</i>)	rs2285053	2.91 (1.02–8.31) (Rec)	Asian	396 DICH/376	Candidate gene: CCS	DICH in subjects \geq 65 years
Ho et al. (2015)	MMP9	rs3787268	0.48 (0.27–0.86)	Asian	326 DICH/439	Candidate gene: CCS	DICH in subjects \geq 65 years
		rs2250889	0.48 (0.27–0.84)				DICH in males < 65 years
Ho et al. (2015)	TIMP1	rs4898	0.35 (0.15–0.81)	Asian	326 DICH/439	Candidate gene: CCS	DICH in males \geq 65 years
Chen et al. (2010)	Tumor necrosis factor (TNF)	G-308A	<mark>2.6 (</mark> 1.3– 5.3)	Asian	260 DICH/368	Candidate gene: CCS	DICH in males
		C-863A	0.5 (0.2–0.9)				DICH in females

CCS, case control study; Dom, dominant; Rec, recessive; Add, additive; LICH, lobar spontaneous intracerebral hemorrhage; DICH, deep spontaneous intracerebral hemorrhage; CAA-ICH, cerebral amyloid angiopathy-related intracerebral hemorrhage; Ref., reference; Abb., Abbreviation; OR, odds ratio.

GENETICS ON RISK OF ICH

SPORADIC COMPLEX DISEASE

TABLE 2 | Genetic variants related to ICH risk in different location (GWAS).

Ref.	Gene Name/Loci and Abb.	Variants	OR (95% CI)	Study population	Cases/Control	Study type	Notes
Marini et al. (2019)	Apolipoprotein E (APOE)	APOE ε4 APOE ε2	1.51 (1.23–1.85) 1.49 (1.24–1.80)	American, European	6195 (2305 LICH)/6929	GWAS with meta-analysis	LICH
Biffi et al. (2010)	APOE	APOE E4	1.21 (1.08-1.36)	European	1081 DICH/3657	GWAS with meta-analysis	DICH
Woo et al. (2014)	12q21.1	rs11179580	1.56	European, American	1545 (664 LICH/881 DICH)/1481	GWAS	LICH
Woo et al. (2014)	1q22	rs2984613	1.44	European, American	3226/3742	GWAS with meta-analysis	DICH
Rannikmäe et al. (2017)	Collagen type IV alpha 2 chain (COL4A2)	rs4771674	1.28 (1.13–1.44)	European	1878/2830	GWAS with meta-analysis	DICH

GWAS, genome-wide association studies; LICH, lobar spontaneous intracerebral hemorrhage; DICH, deep spontaneous intracerebral hemorrhage; Ref., reference; Abb., Abbreviation; OR, odds ratio.

Gene variants associated with ICH risk

Genetic loci for intracerebral hemorrhage. Colors indicate ICH location. The size of bubbles indicates ICH population.

Gene variants associated with ICH risk & **replicated** in multiple studies/populations

Genetic loci for intracerebral hemorrhage. Colors indicate ICH location. The size of bubbles indicates ICH population.

TABLE 3 Well-proved genetic variants related to LICH/DICH risk.

Ref.	Gene name/Locus and Abb.	Variants	OR (95% CI)	Study population	Cases/ Control	Study type (No.)	Notes
Wang et al. (2021)	Methylenetetrahydrofolate reductase (<i>MTHFR</i>)	C677T C	0.85	European, American, African, and Asian	3679/9067	Candidate gene: Meta-analysis	ICH
Anderson et al. (2016)	Cholesteryl ester transfer protein (CETP)	rs173539	1.25	European, American	1149/1238	GWAS with replication	ICH
Yang et al. (2018)	Rho-associated kinase 1 (ROCK1)	rs288980	0.857 (Add)	Asian	607/2443	Candidate gene: CCS	ICH
Jagiełła et al. (2014)	Fibrinogen alpha chain (FGA)	Thr312Ala	2.3 (1.1–4.8) (Dom)	European	503/774	Candidate gene: Meta-analysis	ICH
Yamada et al. (2017)	Serine threonine tyrosine kinase 1 (STYK1)	rs138533962	111.3 (33.0–694.6)	Asian	673/9158	GWAS	ICH
Chen and Hu (2016)	APOE	APOE ε4	2.08 (1.57–2.75)	Asian	2018/2143	Candidate gene: Meta-analysis	ICH
Nie et al. (2019)	APOE	APOE e2	1.21 (1.07–1.37)	European, American, African, and Asian	1642/5545	Candidate gene: Meta-analysis	ICH in European and American
		APOE ε4	1.32 (1.14–1.52)				
Li et al. (2020)	ACE	ACE I/D	1.95 (1.57–2.43) (Rec); 0.7 (0.6–0.82) (Dom); 0.68 (0.6–0.7) (All)	European, American, African, and Asian	3839/5353	Candidate gene: Meta-analysis	ICH in Asians

APOE, apolipoprotein E; ACE, angiotensin I converting enzyme; Dom, dominant; Rec, recessive; Add, additive; All, allelic; GWAS, genome-wide association studies; ICH, spontaneous intracerebral hemorrhage; CCS: case control study; Ref., reference; Abb., Abbreviation; OR, odds ratio.

• Genetics in Complex Diseases

Genetic Scores

Log

rs1801282	rs3749817	rs3027309	rs12102203	rs2228671
rs1799884	rs174570	rs17367504	rs2271293	rs10830963
rs1530440	rs7819412	rs2200733	rs4846914	rs592720
rs2338104	rs17090921	rs10509681	rs10012946	rs3130210
rs11758242	rs10455	rs6102059	rs381815	rs6761276
rs16948048	rs673548	rs10082504	rs2298566	rs3825932
rs10096633	rs7069060	rs662	rs780094	rs16996148
rs1764391	rs1151640	rs2793823	rs864745	rs3846663
rs12678919	rs6754295	rs11755527	rs1260326	rs1111875
rs11538264	rs693	rs3813135	rs20455	rs4402960
rs2296436	rs5985	rs471364	rs4506565	rs2277838
rs2075650	rs17030946	rs13143308	rs2240466	rs11191548
rs8050136	rs416603	rs1376251	rs714052	rs11814680
rs3905000	rs1122955	rs7395662	rs17145738	rs12145360
rs7905784	rs1883025	rs3184504	rs6453373	rs157580
rs10903129	rs13183672	rs653178	rs1153188	rs1004467
rs10490072	rs1799883	rs4607103	rs2515401	rs599839
rs6495122	rs17321515	rs1051038	rs10033464	rs10401969
rs10923931	rs12130333	rs560887	rs2384550	rs646776
rs2650000	rs12272004	rs9472138	rs4875	rs1800961
rs947474	rs7679	rs11206510	rs4747647	rs1532085
rs2083637	rs10889353	rs7754840	rs2681472	rs943133
rs3900940	rs1010	rs1501908	rs2681492	rs3846662
rs619203	rs4939883	rs439401	rs229541	rs2304130
rs529038	rs1167998	rs6987702	rs6544713	rs6511720
rs10817479	rs174547		rs1532624	rs3814843
	6			

-

[©] Genetic Scores

Kathiresan et al. Nature Genetics 2009

GRS with Alleles for **Hypertension** Increases Risk of Deep ICH.

This effect is predominantly observed in non-HTN subjects.

Hypertension YES

Hypertension NO

GRS with Alleles for **Hypertension** Increases Risk of Deep ICH.

Georgakis M, Neurology 2020

Figure 2 Mendelian randomization associations between genetically determined blood pressure and risk of stroke and stroke subtypes

Churches auchateurs		SBP (10 mmHg i	ncrement)		DBP (5 mmHg in	crement)
Stroke subtype		OR (95% CI)	p value		OR (95% CI)	p value
Any stroke	•	1.39 (1.33, 1.44)	1.9E-60	•	1.27 (1.23, 1.32)	1.2E-42
Ischemic stroke	•	1.41 (1.35, 1.47)	1.3E-53	•	1.28 (1.24, 1.33)	2.6E-40
Large artery stroke	-	1.68 (1.54, 1.84)	5.2E-30	-	1.34 (1.25, 1.44)	1.0E-14
Cardioembolic stroke	-	1.24 (1.16, 1.34)	9.9E-09	-	1.17 (1.10, 1.24)	2.7E-06
Small vessel stroke	+	1.47 (1.36, 1.58)	3.5E-22	-	1.36 (1.27, 1.45)	7.8E-19
Intracerebral hemorrhage	_	1.41 (1.11, 1.79)	8.3E-03		1.29 (1.05, 1.57)	0.019
Lobar intracerebral hemorrhage -		1.04 (0.77, 1.40)	0.389	_ _	0.97 (0.76, 1.25)	0.391
Deep intracerebral hemorrhage		• 1.73 (1.30, 2.32)	8.3E-04		— 1.54 (1.21, 1.97)	8.2E-04
0.4	1.0	2.6	0.5	1.0	2.0	
0	dds ratio			Odds ratio		

Results from the fixed-effects inverse variance weighted analysis. CI = confidence interval; DBP = diastolic blood pressure; OR = odds ratio; SBP = systolic blood pressure.

ICH, GENETICS AND LIPIDS PROFILE

- Genetically Elevated LDL Associates with Lower Risk of ICH.

Falcone G, Ann Neurol. 2020 Sun L, Nat. Med 2019

With a **causal relationship** after Mendelian Randomization (MR) analyses.

Location-specific results for ICH risk.

I inid trait	Lobar-ICH = 539	cases		Deep-ICH = 704 cases			
Lipid trait	OR (95%CI)	P Metanalysis Heterogeneity P OR (95% CI) P		Р	Metanalysis Heterogeneity P		
Polygenic risk sco	re analysis *						
Total cholesterol	0.89 (0.80 – 0.99)	0.03	0.42	0.94 (0.85 – 1.08)	0.20	0.96	
LDL cholesterol	0.81 (0.73 – 0.89)	<0.001	0.96	0.90 (0.82 – 0.99)	0.04	0.99	

ICH, GENETICS AND LIPIDS PROFILE

- APOE E4 had decreasing levels of TC and LDL 6 months preceding ICH (Anderson, 2016)

Meta-GRS with Alleles for 21 traits associated with ICH risk better stratify risk of ICH

Myserlis P, Stroke 2023

- E3: Reference
- E2: Risk L-ICH Larger Volume (mortality, poor outcome)

Protect Alzheimer's D

- E4: Risk L-ICH Brain MicroBleeds Decrease LDL pre ICH

Risk Alzheimer's D

1 n=6

ε2ε2

Anderson, 2016 Biffi, 2012 Knol, Neurology, 2020

GENETICS ON ICH EVOLUTION AND OUTCOME

TABLE 4 Genetic variants related to ICH hematoma and outcome.

Ref.	Gene name/Locus and Abb.	Variants	OR (95% CI)	Study population	Sample size	Study type	Notes	
Brouwers et al. (2012a)	APOE	APOE 2	2.72 (1.19–6.23)	European	510 (265 LICH)	Candidate gene: PCS	Hematoma expansion after LICH	L-ICH Expansion
Brouwers et al. (2012b)	APOE	APOE 2	2.09 (1.05–4.19)	European	371 (196 LICH)	Candidate gene: PCS	Spot sign in LICH	
Biffi et al. (2011)	APOE	APOE 2	1.52 (1.25–1.85) for disability; 1.50 (1.23–1.82) for mortality	European, American	2,025 (849 LICH)	GWAS with meta-analysis	Hematoma volume, poor outcome and mortality at 3 m in LICH	L-ICH Volume Bad outcome, Mort
Math et al. (2019)	APOE	APOE e4	2.60 (1.25–5.41)	American, European	192	Candidate gene: meta- analysis	Poor outcome	Bad Outcome
Appelboom et al. (2013)	von Willebrand Factor (VWF)	rs216321	-	American	82	Candidate gene: PCS	Relative hematoma growth	ICH Expanison
Marini et al. (2018)	17p12	rs11655160	0.17 for aGCS; 1.94 for disability	European	634 (335 DICH)	GWAS with meta-analysis	Hematoma volume, aGCS and poor outcome at 3 m in DICH	D-ICH Volume Bad outcome, Mort
Marini et al. (2018)	22q13	rs9614326	-	European	394	GWAS	Hematoma volume	ICH Volume
Murthy et al. (2015)	Haptoglobin (HP)	HP2-1/2-2	0.13 (0.03–0.71)	American	94	Candidate gene: OCS	Favorable outcome at 30 days	Good Oucome
El Husseini et al. (2018)	Interleukin 6 cytokine family signal transducer (/L6ST)	rs10940495	0.16 (0.03–0.87)	American	54	Candidate gene: OCS	Poor outcome at 6 m	Bad outcome
Appelboom et al. (2011)	Complement factor H (C <i>FH</i>)	rs1061170	7.62 (1.40–41.6) for mortality at discharge; 1.822 (1.025–3.239) for mortality at 6 m; 1.822 (1.025–3.239) for survival duration	American, Asian, Hispanic	82	Candidate gene: OCS	Mortality at discharge and 6 m, and survival duration	Bad outcome
Xia et al. (2018)	Collagen type IV alpha 2 chain (COL4A1)	rs532625	3.557 for disability at 3 m; 4.264 for disability at 6 m; 3.568 for mortality/disability at 6 m	Asian	181 HICH	Candidate gene: PCS	Disability at 3 and 6 m; poor outcome at 6 m	Bad outcome
Falcone et al. (2013)	Blood pressure-related alleles	42 SNPs	1.71 (1.05–2.80)	European	323 (135 DICH)	GWAS	Hematoma volume, poor outcome at 3 m in DICH	Bad outcome, Mort

GENETICS ON ICH EVOLUTION AND OUTCOME

GRS constructed with **Hypertension** related **alleles** was associated with **D-ICH Prognosis**.

Each additional SD of the score was associated with:

- 28% increase in D-ICH volume
- 71% increase of **poor clinical outcome** (mRS>2 at 90 days)

Falcone et al. (2013)

GENETICS ON ICH EVOLUTION AND OUTCOME

GENETICS MEDIATING ON RISK FACTORS FOR ICH

FOXO3 longevity allel (rs2802292) attenuates HT effect on risk of ICH.

Nakagawa et al. (2022) (n=6469)

ANTICOAGULANTS

- Polymorphisms in CYP2C9 (encoding cytochrome P450 2C9) and VKORC1 (encoding vitamin K epoxide reductase complex subunit 1) explain about 30-40% of total variation in final dose of warfarin.
- In February 2010, FDA provided genotype-specific dose ranges, and suggested that genotypes be taken into consideration when prescribing the drug.

Percentage of dose variation explained at weekly time points.

- CYP2C9 (encoding cytochrome P450 2C9) and VKORC1 (encoding vitamin K epoxide reductase complex subunit 1) associated with acenocoumarol (oral anticoagulant) maintenance dose were also associated with ICH risk. (Cullell, 2020)

- APOE +2 and APOE +4 were associated with warfarin related L-ICH (Falcone et al., 2014).

- GRS from ICH GWAS improves stratification of Anticoagulant risk for ICH. (Mayerhofer et al, 2023)

Probability of intracerebral hemorrhage survival ° Intracerebral hemorrhage free 97.5% 0.6 95.0% 0.5 92.5% 90.0% -2 0 2 10 15 5 Genetic score [SD] Follow-up time [years]


```
CRS (HAS-BLED) predicted ICH with HR= 1.24 per point
```

CRS+GRS predicted ICH with HR= 1.33 per point

CRS+GRS had 19% improvement in high-risk classification and a net reclassification improvement of 0.10.

Genetic score = Lowest tertile - Highest tertile

DIRECT-ACTING ORAL ANTICOAGULANTS (DOACS)

Variants en ABCB1 and CES1 genes alter concentration of **Dabigatran**.

- CES1
 - rs2244613:
 - ↓active metabolite
 - **J Bleedings.** No increasing ischemic events
 - rs8192935 :
 - tactive metabolite
- ABCB1:
 - rs4148738:
 - * ↑active metabolite

FARMACOGENETICS DIRECT-ACTING ORAL ANTICOAGULANTS (DOACS)

Table 2. Pharmacokinetic variations in DOACs based on genetic polymorphisms of CES1, ABCB1, CYP3A4, CYP3A5, ABCG2, and SLCO1B1.

Gene SNP Allelic Change Amino Acid Change Frequency	DABIGATRAN	RIVAROXABAN	APIXABAN	EDOXABAN	BETRIXABAN
CES1 rs2244613 intron: C > A C = 0.266 [13]	↓ [trough] by 15% per mutated allele $(p = 1.2 \times 10^{-8})$ [14] ↓ risk of bleeding $(p = 7 \times 10^{-5})$ [14] ↓ bleeding compared to warfarin for mutated alleles (p = 0.002) [14] Not associated with ischemic events [14] ↓ [trough] of dabigatran $(p = 0.04)$ HTZ = 2% and MT = 3% [15] No effect on AUC (NS) or [peak] (NS) [16] ↓ [trough] for mutated alleles carriers (NS) [17]	NI	NI	NI	NI
CES1 rs8192935 intron: T > C T = 0.420 [13]	↓ [peak] by 12% ($p = 3.2 \times 10^{-8}$) [14] Not associated with ischemic or bleeding events [14] ↓ [trough] ($p = 0.033$) HTZ = 3% and MT «TT» = 11% [15]	NI	NI	NI	NI
$\begin{array}{c} CES1\\ \textbf{rs71647871}\\ 536 \text{ G} > \text{A}\\ 143 \text{ Gly} > \text{Glu}\\ \text{A} = 0.014 \ [13] \end{array}$	Loss of CES1 function: \downarrow by 41% of the transformation of the prodrug and metabolites in dabigatran ($p = 0.026$ for BIBR 951) [12]	NI	NI	NI	NI
ABCB1 rs1128503 1236 C > T 412 Gly > Gly T = 0.46 [13]	Results not significant for AUC and [peak] of dabigatran Haplotype HTZ: <i>p</i> = 0.61 Haplotype MT: <i>p</i> = 0.58 [16]	Major bleeding under rivaroxaban for three MT patients [18]	No impact on [trough]/dose ratio for apixaban [19]	NI	NI
ABCB1 rs2032582 2677 G > T/A 893 Ala > Ser/Thr T = 0.42 A = 0.08 [13]	Results not significant for AUC and [peak] of dabigatran Haplotype HTZ: p = 0.61 Haplotype MT: p = 0.58 [16]	One case of rivaroxaban-induced hemorrhage with homozygous mutated genotypes 'TT' [20] No significant increase of rivaroxaban [peak] [16] Major bleeding under rivaroxaban for three MT patients [18]	No impact on [trough]/dose ratio for apixaban [19] One case of highly increased [peak] and concentration 12 h post dose in a homozygous patient (TT), along with other mutations on <i>ABCB1</i> (rs1045642, MT), <i>ABCG2</i> (rs2231142, HTZ), and <i>CYP3A5</i> (rs776746, MT) [21]	NI	NI

Johanna Raymond , ET AL. J. Pers. Med. 2021, 11, 37. https://doi.org/10.3390/jpm11010037

DIRECT-ACTING ORAL ANTICOAGULANTS (DOACS)

Table 2. Cont.

Gene SNP Allelic Change Amino Acid Change Frequency	DABIGATRAN	RIVAROXABAN APIXABAN		EDOXABAN	BETRIXABAN
ABCB1 rs4148738 intron: A > G G = 0.38 [13]	Associated with \uparrow [peak] by 12% ($p = 8.2 \times 10^{-8}$), but not associated with ischemic or bleeding events [14] No effect on [trough] and [peak] of dabigatran [15] Associated with \uparrow [peak] of dabigatran [17] No impact on dabigatran pharmacokinetics [25]	Major bleeding under rivaroxaban for three MT patients [18]	Associated with↑[peak] of apixaban (p = 0.048) [26] No impact on apixaban pharmacokinetics [23]	NI	NI
CYP3A4 rs35599367 intron C > T T = 0.03 [13]	NI	No significant increase of rivaroxaban [peak] in mutated patients compared to wild type (haplotype of ABCB1 rs1045642 and CYP3A4 rs35599367) [22]	NI	NI	NI
CYP3A5 rs776746 intron: T > C T = 0.29 [13]	NI	NI	Significant ↑ of ratio [trough]/dose of apixaban in HTZ or MT patients [19] One case of highly increased [peak] and concentration 12 h post dose in a MT patient, along with other mutations on <i>ABCB1</i> (rs2032582 and rs1045642, MT), and <i>ABCG2</i> (rs2231142, HTZ) [21] No impact on apixaban pharmacokinetics [23]	NI	NI
ABCG2 rs2231142 421 C > A 141 Gln > Lys A = 0.12 [13]	NI	NI	Significant ↑ of [trough]/dose ratio of apixaban in MT patients [19] One case of highly increased [peak] and concentration 12 h post dose in an HTZ patient, along with other mutations on <i>ABCB1</i> (rs2032582 and rs1045642, MT), and <i>CYP3A5</i> (rs776746, MT) [21] ↑ [peak] et [trough] of apixaban [27]	NI	NI
SLCO1B1 rs4149056 521 T > C 174 Val > Ala C = 0.13 [13]	NI	NI	NI	It seems to have no impact on the pharmacokinetics of edoxaban [24]	NI

AUC: area under curve; MT: mutated homozygous; HTZ: heterozygous; 1: decrease; 1: increase; [peak]: peak concentration; [trough]: trough concentration; NI: no information; NS: non significant.

Johanna Raymond , ET AL. J. Pers. Med. 2021, 11, 37. https://doi.org/10.3390/jpm11010037

•ANTIPLATELETS (AAS)

- PIA1/A2 (GPIIIa) PIA2 allele carrier was associated with a higher incidence of stroke
- COX1:
- COX2 (rs20417): Carriers showed decreased CVD

Floyd et al 2014 Ross et al 2014

ANTIPLATELETS (Clopidogrel)

• FDA announced in 2010 suggested that genetic testing could identify individuals slow metabolizers.

Original Contribution | August 26, 2009

Association of Cytochrome P450 2C19 Genotype With the Antiplatelet Effect and Clinical Efficacy of Clopidogrel Therapy

Alan R. Shuldiner, MD; Jeffrey R. O'Connell, DPhil; Kevin P. Bliden, BS; Amish Gandhi, MD; Kathleen Ryan, MPH; Richard B. Horenstein, MD; Coleen M. Damcott, PhD; Ruth Pakyz, BS; Udaya S. Tantry, PhD; Quince Gibson, MBA; Toni I. Pollin, PhD; Wendy Post, MD, MS; Afshin Parsa, MD; Braxton D. Mitchell, PhD; Nauder Faraday, MD; William Herzog, MD; Paul A. Gurbel, MD

Available online at Elsevier Masson France ScienceDirect EM consulte www.sciencedirect.com www.em-consulte.com/en

CLINICAL RESEARCH

Cytochrome CYP2C19 polymorphism and risk of adverse clinical events in clopidogrel-treated patients: A meta-analysis based on 23,035 subjects

Polymorphisme du cytochrome CYP2C19 et risque d'évènements indésirables chez des patients traités par clopidogrel : méta-analyse de 23 035 sujets

> Liu Mao, Chen Jian, Liu Changzhi, Huang Dan, Huang Suihua, Tang Wenyi, Wu Wei*

RESPONSE to rTPA

- rs669 in A2M gene, rs1801020 in F12 gene and rs1695 in GSTP1, associated with hemorrhagic transformation
- GenoTPA score predicts risk if Hemorrhagic Transformation after rTPA.

Carrera C,et al. Spanish Stroke Genetic Consortium. Neurology. 2019 Aug 27;93(9):e851-e863.

(A) Cohort A, (B) cohort B, (C) cohort C, and (D) cohort D. Score groups: G0 ≤3.95 points; G1, 3.95 to 5.10 points; G2, 5.10 to 6.10 points; and G3 ≥6.10 points. HI = hemorrhagic infarct; HT = hemorrhagic transformation; PH = parenchymal hematoma.

RESPONSE to treatment with oral antidiabetic drugs OADs:

- Metformin: SLC22A1, SLC22A2, SLC47A1, PRKAB2, PRKAA2, PRKAA1, and STK11
- Sulfonylureas: CYP2C9 and TCF7L2
- Repaglinide: KCNJ11, SLC30A8, NEUROD1/BETA2, UCP2, and PAX4 loci
- Pioglitazone: PPARG2 and PTPRD loci
- Rosiglitazone: KCNQ1 and RBP4 loci
- Acarbose: PPARA, HNF4A, LIPC, and PPARGC1A loci.

• • • •

Gene Expression Image: Strategy of the strate

EPIGENETICS

Epigenetic mechanisms in gene regulation

Potential as a dynamic **biomarker**

EPIGENETICS. DNA-Methylation

Some in-vitro and tissue studies suggest candidate genes (m6A hub gene) related with inflammation and ICH (Zhou, Neuroimmun 2023)

No EWAS studies properly powered so far. Some of them retracted.

EPIGENETICS. DNA-Methylation

Genome-Wide DNA Methylation Pattern in Whole Blood Associated With Primary Intracerebral Hemorrhage

Yupeng Zhang^{1†}, Hongyu Long^{1†}, Sai Wang¹, Wenbiao Xiao¹, Meishan Xiong¹, Jianyi Liu¹, Lei Chen¹, Ruijuan Chen², Xueli Wei², Yi Shu³, Yi Zeng² and Le Zhang^{1*}

¹ Department of Neurology, Xiangya Hospital, Central South University, Changsha, China, ² Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, China, ³ Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China

Front immunol, 2021

1530 sites (p-value < 5.92E-08)

Some design flaws and limitations:

N= 30/34 QC? Popul stratification? Batch Effect? No adjustments by age or VRF

EPIGENETICS. miRNAS

- Risk Factor
- Biomarker
- Therapeutic Target
- Therapeutic agent

EPIGENETICS. miRNAS

Neuroinflammation after ICH and microRNAs' modulation

EPIGENETICS. miRNAS

Procedures to develop microRNAbased therapeutics for ICH.

Discover new mechanisms

- Developing new drugs
- New risk factors

Pharmaceuticals Consumer Health Personalized medicine Generics Fine chemicals, food & feed Vaccines

FERRER INCODE: LEADING DIAGNOSTICS

Ferrer is committed to advancing wellbeing through innovation in state-of-the-art technology and products. Ferrer inCode offers healthcare professionals a range of services in order to make informed decisions regarding the prevention, diagnosis and prognosis of serious diseases. The result: more personalized treatment.

We believe that genetic information is crucial to making good medical decisions. These decisions can help improve the quality of life of patients suffering from cancer or cardiovascular disease.

TURNING RESEARCH INTO RESULTS

Since 2007, Ferrer inCode has established an impressive track record in creating effective healthcare applications from cutting-edge science. This is combined with the highest technical quality standards and rigorous clinical validation, including research published in leading, peer-reviewed medical journals. We have repeatedly converted our own research and innovation into a range of proven tools for medical professionals.

The services offered by Ferrer inCode are based on genomic and proteomic technology,

Ferrer inCode Molecular diagnostics and personalized medicine ACCES WEB FERRER INCODE

Productos

Proyectos

Laboratorio

Alianzas

Contacto

. Gendiag

Compañía

Personalized Medicine:

- Early diagnosis
- Predicting and preventing risk
- Choosing the best individualized therapy

