

PREVICTUS PROJECT

Objectives: To perform an algorithm with multi-omic data to predict Hemorrhagic Transformation after rtPA or mechanical thrombectomy.

Secondary objectives: To use these multi-omic data to understand the biological pathways associated with stroke risk and stroke outcome in order to find new treatments for stroke.

530 SUBJECTS WITH:

PROTEOMIC DATA (3.000 Proteins)

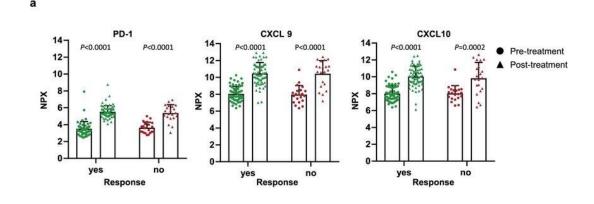
1900 SUBJECTS WITH:

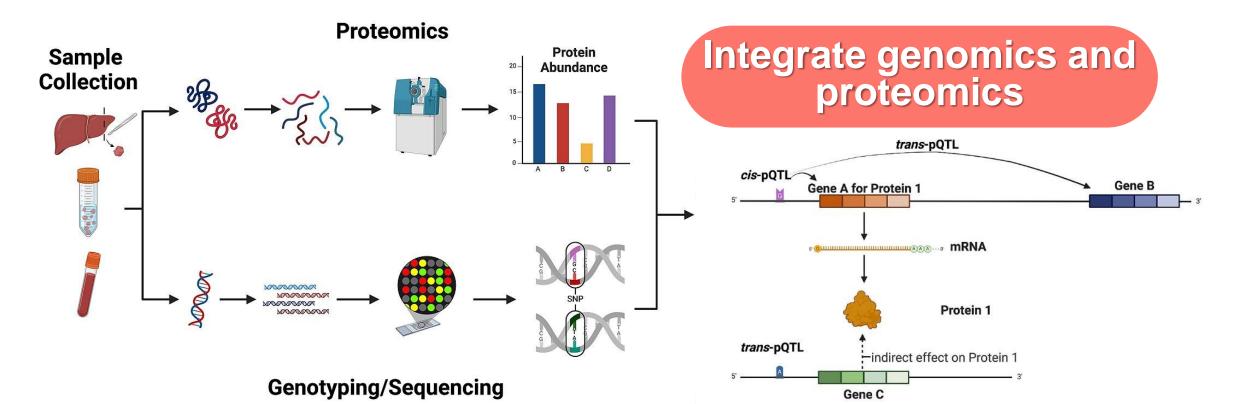
GENOMIC DATA (8M Genetic Variations)

PREVICTUS PROJECT

Participants:

SANT PAU Campus Salut Barcelona

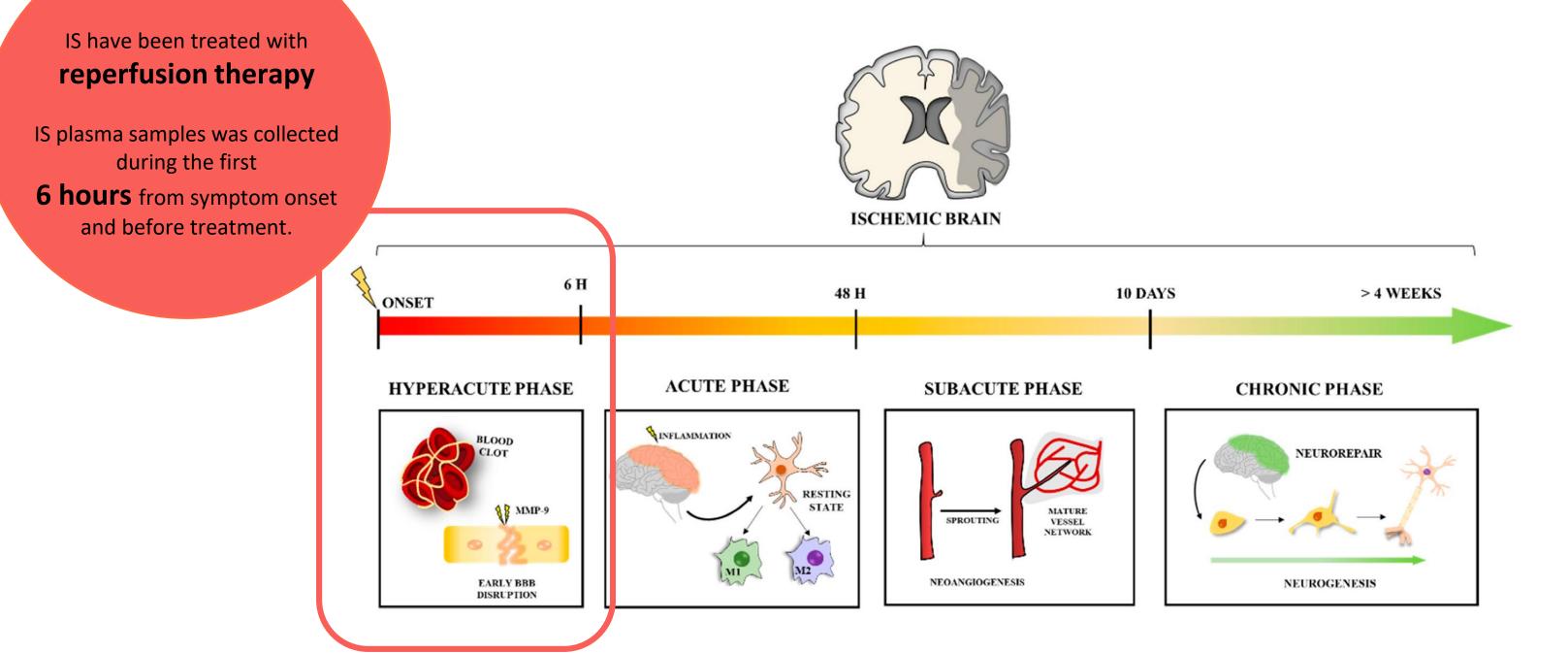

DATA


Proteomic Olink® Explore 3072

Genotyping Array

Clinical variables

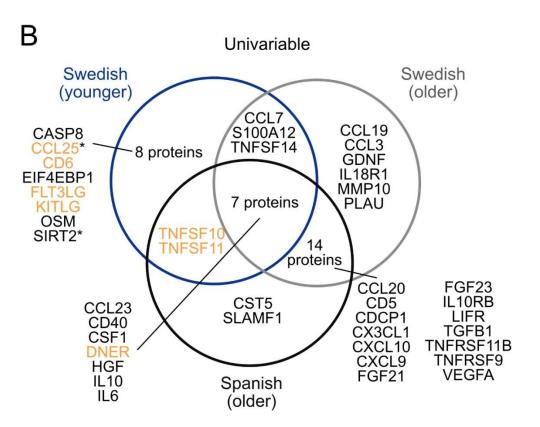
Proteomic analysis


- 1. Identify proteins altered in acutephase stroke patients.
- 2. Identify proteins associated with the mRs3
 - □ PROTEOME-WIDE ANALYSIS
- 3. Develop a protein signature to predict the risk of severe hemorrages after treatment.
 - □ PROTEOMIC-CLINICAL SCORE BASED ON MACHINE LEARNING
- 4. Integrate genomics and proteomics to identify genetic variants that regulate protein levels in the acute phase of stroke.
 - ☐ CONTEXT SPECIFIC PROTEIN

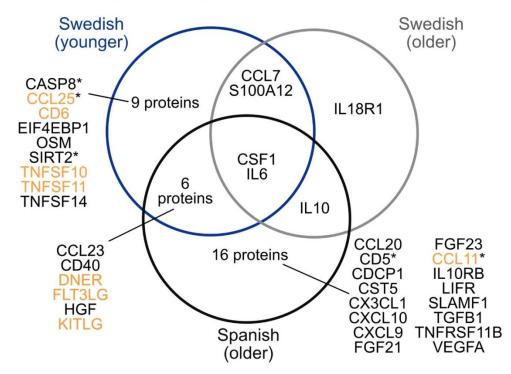
 QUANTITATIVE TRAIT LOCI (pQTL)

 ANALYSIS

PROTEOME-WIDE ANALYSIS IN THE HYPERACUTE PHASE OF THE STROKE



PROTEOMIC STUDY IDENTIFIES INFLAMMATORY PLASMA PROTEINS ASSOCIATED WITH 3-MONTH FUNCTIONAL OUTCOME AFTER ISCHEMIC STROKE

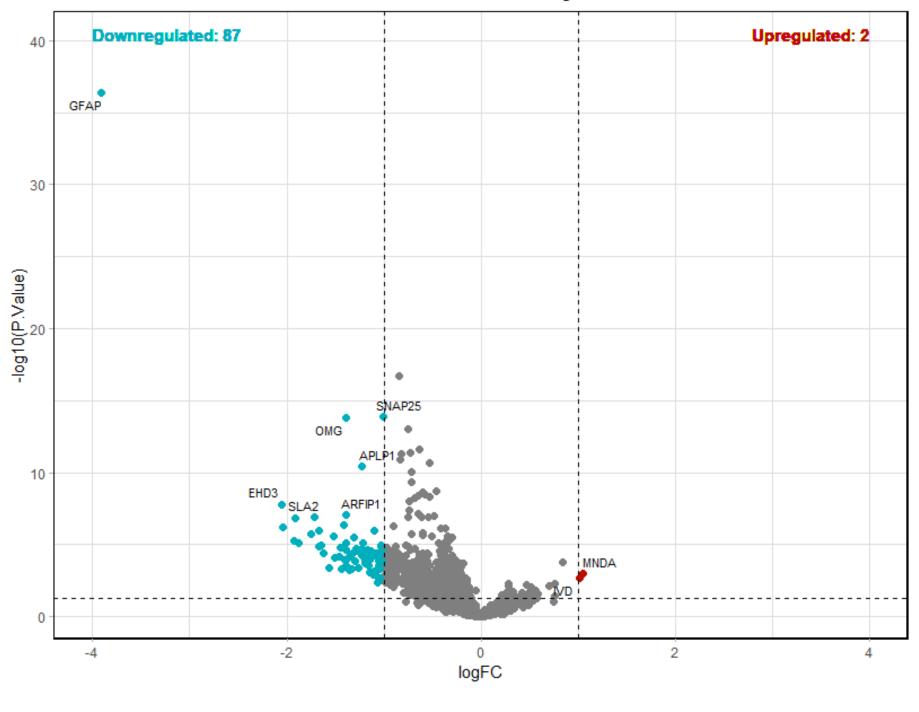


Dr Christina Jern
Dr Tara M. Stanne
MSc Kara Tai
Sahlgrenska Academy, University
of Gothenburg, Sweden

	Swedish (younger)	Swedish (older)	Spanish (older)
n	534	482	379
Poor outcome (mRS>2)	119 (22%)	161 (33%)	210 (55%)
Age, median [IQR], years	58 [52-64]	69 [56-78]	74 [62-86]
Male sex, n (%)	340 (64)	294 (61)	198 (52)
Diabetes mellitus, n (%)	100 (19)	61 (13)	93 (25)
Hypertension, n (%)	320 (60)	209 (43)	275 (73)
Time to blood draw, median	4 days	2 days	6 hours
Thrombectomy or IV thrombolysis, n (%)	0 (0)		379 (100)
NIHSS, acute or after recanalization therapy, median [IQR]	3 [2-7]	2 [1-6]	6 [2-14]

Adjusted for age, sex and diabetes mellitus

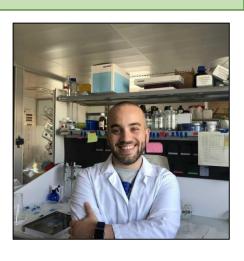
Black = OR >1 and FDR < 0.05 Orange = OR <1 and FDR < 0.05


* Inconsistent directions across cohorts

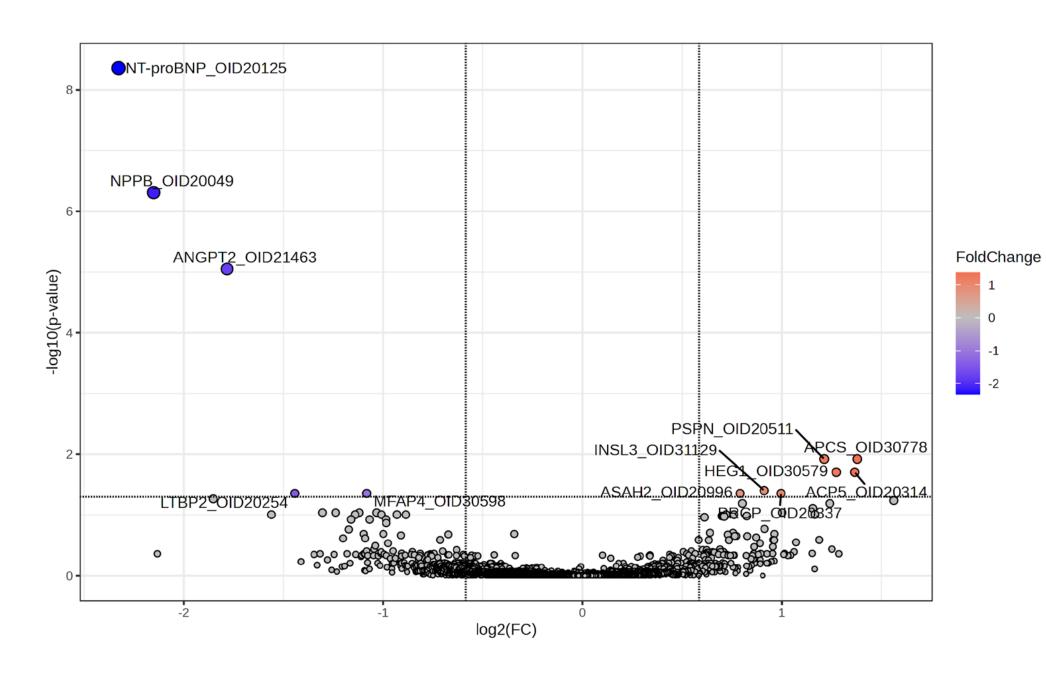
Ischemic vs Hemorrhagic

T-Test Analysis (FDR, P-Value Adjusted)

P.value	* 0.05	** 0.01	*** 0.001
Proteins	553	276	79


Ischemic vs Hemorragic

Downregulated
 Upregulated


	1	Top 20 D		expression	on protein	analysis		
Assay	Panel	UniProt	logFC	CI.L	CI.R	t	P.Value	adj.P.Val
GFAP	Oncology	P14136	-3.907459	-4.449042	-3.3658751	-14.185025	4.176838e-37	1.057158e-3
SNAP25	Neurology_II	P60880	-1.006607	-1.253250	-0.7599643	-8.024039	1.219526e-14	3.084180e-1
OMG	Oncology	P23515	-1.391737	-1.733971	-1.0495025	-7.995304	1.490354e-14	3.767616e-1
APLP1	Cardiometabolic	P51693	-1.231856	-1.586975	-0.8767363	-6.820037	3.491115e-11	8.801100e-0
EHD3	Cardiometabolic_II	Q9NZN3	-2.053637	-2.752745	-1.3545293	-5.775383	1.572789e-08	3.949274e-0
ARFIP1	Neurology_II	P53367	-1.394417	-1.897531	-0.8913019	-5.449124	9.000321e-08	2.257280e-0
SLA2	Neurology_II	Q9H6Q3	-1.714807	-2.341795	-1.0878185	-5.377209	1.307702e-07	3.273177e-0
LDLRAP1	Neurology_II	Q5SW96	-1.910247	-2.610797	-1.2096969	-5.361070	1.421294e-07	3.556078e-0
SH2B3	Oncology	Q9UQQ2	-1.408357	-1.947710	-0.8690038	-5.133822	4.494975e-07	1.124193e-0
DAPP1	Inflammation	Q9UN19	-2.036054	-2.828035	-1.2440734	-5.054473	6.655777e-07	1.663279e-0
LYN	Oncology	P07948	-1.101025	-1.538152	-0.6638980	-4.952116	1.096265e-06	2.736279e-0
DNM1	Oncology_II	Q05193	-1.673075	-2.337767	-1.0083841	-4.948764	1.114173e-06	2.779861e-0
GRAP2	Cardiometabolic	075791	-1.753233	-2.467214	-1.0392517	-4.827853	1.986814e-06	4.951141e-0
MAP4K5	Neurology	Q9Y4K4	-1.514690	-2.140329	-0.8890517	-4.759939	2.735457e-06	6.808552e-0
ITPA	Cardiometabolic_II	Q9BY32	-1.313123	-1.857677	-0.7685684	-4.740949	2.989341e-06	7.434491e-0
SERPINH1	Oncology_II	P50454	-1.928227	-2.752065	-1.1043897	-4.601694	5.680167e-06	1.410953e-0
AKT2	Neurology_II	P31751	-1.874836	-2.686570	-1.0631019	-4.540992	7.477450e-06	1.855155e-0
NCK2	Inflammation	O43639	-1.215995	-1.742719	-0.6892717	-4.538896	7.548344e-06	1.871989e-0
IRAK4	Inflammation	Q9NWZ3	-1.394511	-1.998899	-0.7901233	-4.536361	7.634994e-06	1.892715e-0
TMEM132A	Cardiometabolic_II	Q24JP5	-1.031151	-1.487913	-0.5743893	-4.438475	1.181487e-05	2.926544e-0
UFD1	Oncology_II	Q92890	-1.641900	-2.369227	-0.9145735	-4.438317	1.182311e-05	2.927402e-0
ABRAXAS2	Cardiometabolic_II	Q15018	-1.034553	-1.493698	-0.5754087	-4.430009	1.226505e-05	3.034373e-0
STAT5B	Oncology	P51692	-1.671306	-2.417649	-0.9249636	-4.402699	1.383197e-05	3.419264e-0
PMVK	Neurology	Q15126	-1.451370	-2.105670	-0.7970696	-4.361162	1.658788e-05	4.093889e-0

Neurology_II O60890 -1.284743 -1.868702 -0.7007836 -4.325485 1.936757e-05 4.776043e-02

Aterothrombotic vs Cardioembolic

AT/CES Comparative

5 Down - 7 UP

Top 12 Differentially Expressed Proteins

Name ↑↓	FC ↑↓	log2(FC) ↑↓	p.ajusted ↑↓	-log10(p) ↑↓
NT- proBNP_OID20125	0.19928	-2.3271	4.3961E-9	8.3569
NPPB_OID20049	0.22515	-2.151	4.9245E-7	6.3076
ANGPT2_OID21463	0.29062	-1.7828	8.9132E-6	5.05
APCS_OID30778	2.6005	1.3788	0.012004	1.9207
PSPN_OID20511	2.3177	1.2127	0.012004	1.9207
ACP5_OID20314	2.5778	1.3661	0.019772	1.7039
HEG1_OID30579	2.4179	1.2738	0.019772	1.7039
INSL3_OID31129	1.8815	0.91187	0.039609	1.4022
LTBP2_OID20254	0.36789	-1.4427	0.044147	1.3551
MFAP4_OID30598	0.47235	-1.0821	0.044147	1.3551
PRCP_OID20337	1.9945	0.99602	0.044147	1.3551
ASAH2_OID20996	1.7301	0.79083	0.044147	1.3551

O11 Proteomics of stroke risk

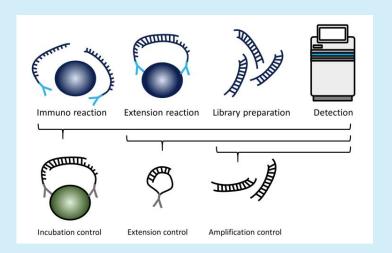
Plasma collections of 686 patients

ISQUEMIC STROKE (IS)

498

POPULTAION CONTROLS →

50

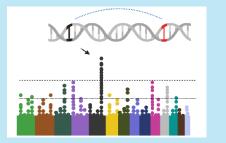

REPLICATION DISCOVERY

- 398 IS cases
- 100 IS cases
- 39 controls
- 13 controls

OLINK **Explore to** analyse 3,072 proteins

Analysis Plan

PROTEOME-WIDE **ANALYSIS**

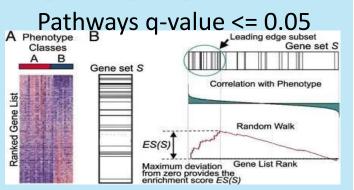

Linear regression with Limma *NPX* ~ *IS risk* + *sex* + *age*

PROTEINS SELECTION

Proteins q-value <= 0.05 and consistent logFC across both cohorts

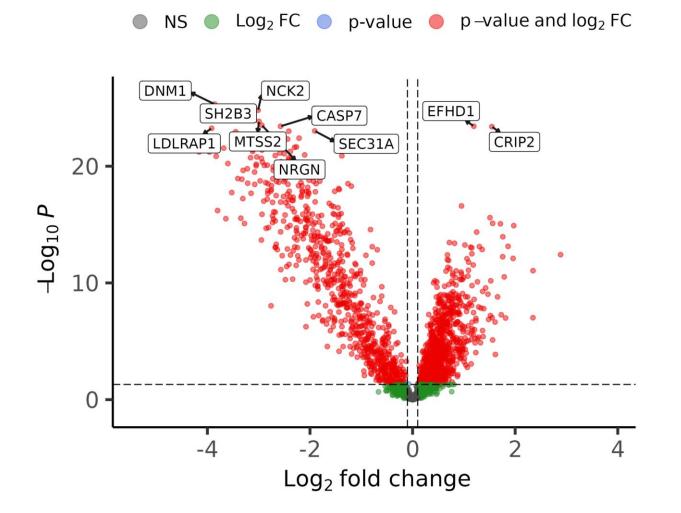
STROKE RISK? MR and **COLOCALIZATION**

with GIGASTROKE


Cox in **UKBB** data Proteins q-value <= 0.05

GSEA (Gene Set **Enrichment Analysis**)

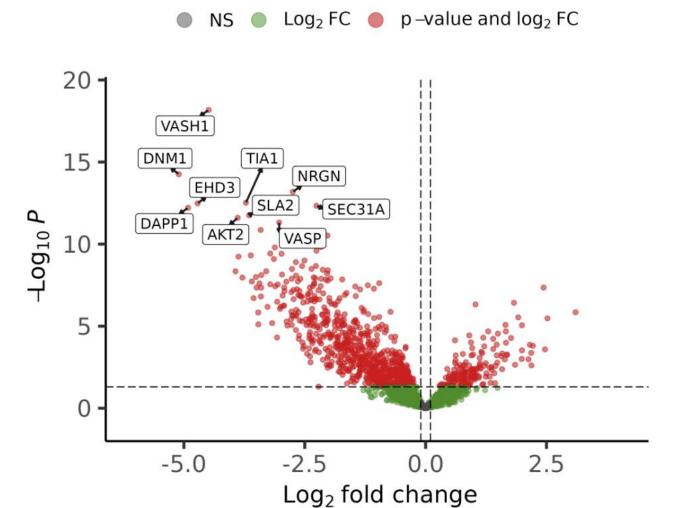
PATHWAYS SELECTION



DISCOVERY → 383 IS cases vs. 39 population controls **REPLICATION** → 100 IS cases vs. 13 population controls

NPX ~ IS risk + sex + age

DISCOVERY

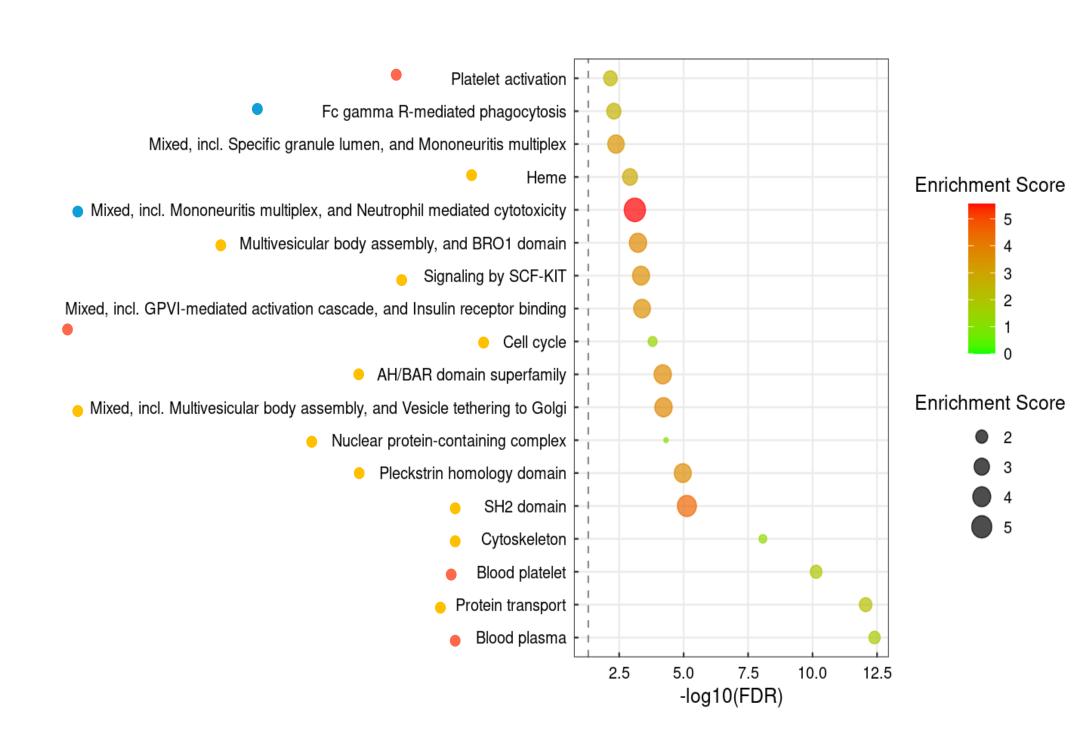


640 proteins associated with IS

(q-value <= 0.05 and consistent logFC across both cohorts)

A predominant pattern of lower levels in IS cases (81%)

REPLICATION


PROTEOME-WIDE ANALYSIS

 DISCOVERY
 383
 39

 REPLICATION
 100
 13

Linear regression with Limma

inflammation/ immune response, platelet activation/blood processes cellular injury processes

3,000 plasma proteins across 50,000 individuals

Dr Claudia Langenberg Dr Julia Carrasco-Zanini-Sanchez Precision Healthcare University Research Institute, Queen Mary University of London, UK

Baseline assessment visit

3y

(N = 77)

COX IN UKBB DATA

(N = 164)

Years before stroke

(N = 245)

10y

(N = 404)

14y

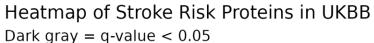
(N = 571)

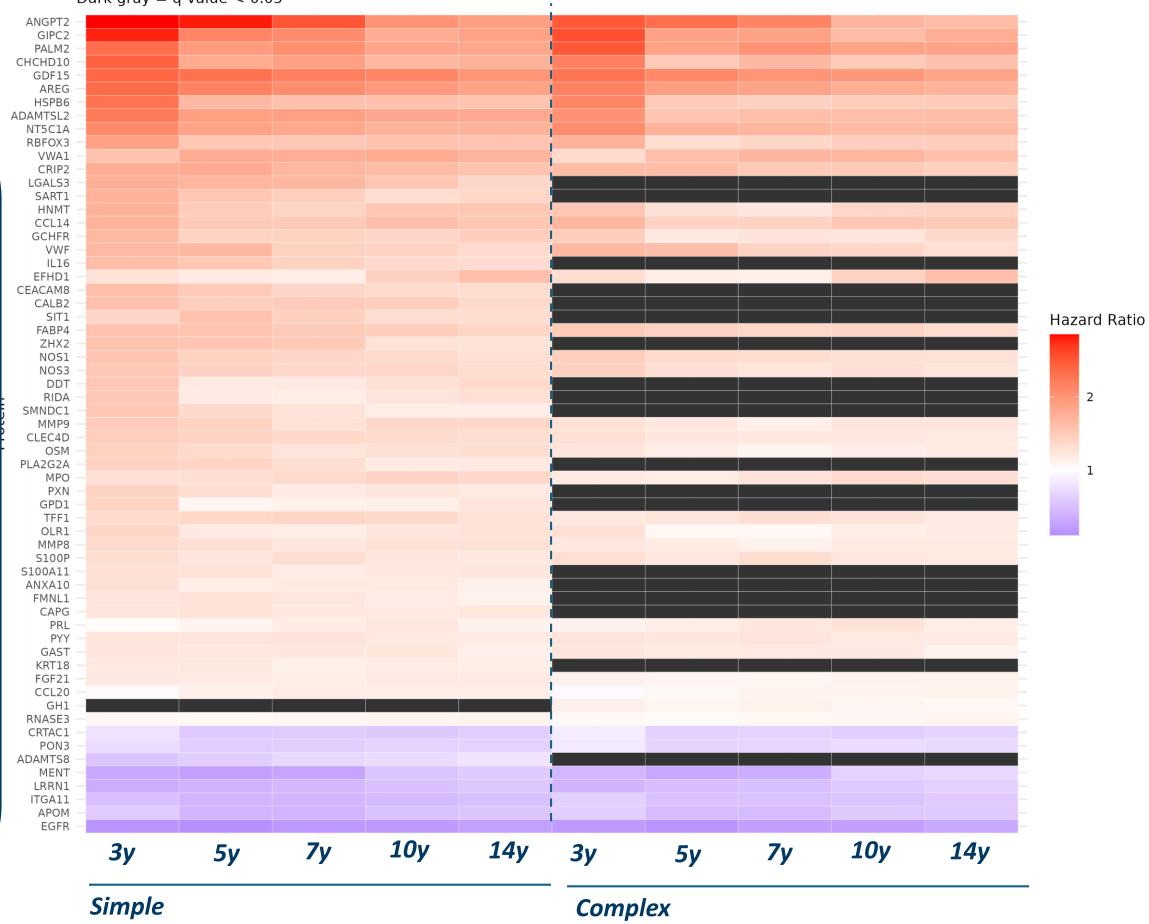
640 proteins associated with IS

→ Simple: sex, age, platelets

→ Complex: sex, age, platelets, BMI, alcohol consumption, smoking

COX IN UKBB DATA


PREVIOUS STUDIES


Stroke risk
IL16, NOS1, NOS3, MMP8
PRL, ADAMTSL2, APOM,
CCL14, CCEC4D

Stroke risk + outcome FAB4, VWF

Outcome

MMP9, AMGP2, CRTAC1, MPO, OSM, RNASE3

PROTEOME-WIDE ANALYSIS

BY TOAST

Linear regression with Limma

NPX ~ IS risk + sex + age

PROTEINS SELECTION

MR and

COLOCALIZATION

with GIGASTROKE

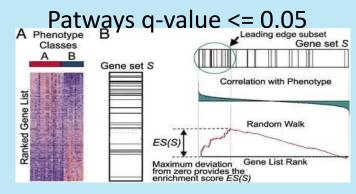
DODOOM

Proteins q-value <= 0.05 and consistent logFC across both cohorts

STROKE RISK?

Cox in UKBB data

Proteins q-value <= 0.05



PHARMACOLOGICAL REPOSITIONING ANALYSIS

GSEA (Gene Set Enrichment Analysis)

PATHWAYS SELECTION

02 Next steps

03 Conclusions

A total of 640 proteins were associated with the acute phase of IS.

Involved in pathways related to inflammation/immune response, platelet activation/blood, and cellular injury.

61 proteins were associated with IS incidence or risk in UKBB.

Although most of the proteins associated with IS in the acute phase have lower levels in cases than in controls, those specifically associated with risk have higher levels.

Stroke Pharmacogenomics and Genetics Group Sant Pau Research Institute, Barcelona, Spain

THANK YOU FOR YOUR ATENTION

LLlucia@santpau.cat IFernandezC@santpau.cat https://strokemics.com/